" Technical Report Series

R et i > © sttt oty v i Lo 2
© mege e e e g s p s A bt P o e o i v
g s i e e S e 2 R TRt 5 A X N RN witx AN PR oA TRE IRKEL et IEPERR

(PSEE Architecture Report

Architectures and Models

for Next Generation Process-based

CBed i Software Engineering Environments

ELECTE
MAR 01 1395

G

: v DISTRIBUTION STATEMENT A
= Approved for public release;
[istrivuton Unlimuted



PSEE Architecture Report

Architectures and Models
for Next Generation Process-based

Software Engineering Environments

DTIC,

ELECTE
" MAR 011995 |

G

TRW Systems Integration Group
Redondo Beach, California 90278

Sponsored by

1
ne?

Advanced Research Projects Agency (ARPA) . o7
and Space and Naval Warfare Systems Command
ARPA Order No. B343
Under SPAWAR Contract # N00039-95-C-0017

a4
DTG GUALITY m&:am,@ %
February 1995

The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U. S. Government.

BISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited




REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collecticn of information 1s estimated 0 average 1 nour Der resporse, including the time for
gathering 3n¢ maintaining the data needed, and corrpleting and reviewing the cotlection of information. Send comments fe'? t
roliection of infarmatuon, including suggestons tor recucing this burgen. 10 Nashington Heacauarters Seruices, Directorate tor informati

reviewing instructicns, searching existing data sources,
arding this burden estimate of any other aspect of this

on Gperations and Reports, 1215 Jetterson

Sans Higheay, Sute 1204, Arlingion. /2 22202-4302, and 10 the Office of Management and gudger, Paper~or Peduction Project (0704-0188), ¥Washington, DL 20503,
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
February 1995 Interim

4. TITLE AND SUBTITLE

PSEE Architecture Report f
PSEE Architecture Report Attachment - Section 11

6. AUTHOR(S)

Maria H. Penedo (author, editor)

'5. FUNDING NUMBERS

SPAWAR C#
N00039-95-C-0017
ARPA Order #B343

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) o N 8. PERFORMING ORGANIZATION

REP
TRW

One Space Park

Redondo Beach, CA 90278

ORT NUMBER

9. SPONSdRING/MONITORING AGENtY NAME(S) AND ADDRESS(ES) ) 10. SPONSORING/ MONITORING

AG

SPAWAR, 2451 Crystal Drive, Arlington, VA 22245-54200
ARPA, 3701 North Fairfax Drive, Arlington, VA 22203

ENCY REPORT NUMBER

41. SUPPLEMENTARY MOTES

|

122, DISTRIBUTION / AVAILABILITY STATEMENT ’ - h 12b. DISTRIBUTION CODE

Distribution Statement A: Approved for public release,
distribution is unlimited. -

!

13. ABSTRACT (Maximum 200 words) . .
This Architecture Report documents investigations towards the
Process-based Software Engineering Environment (PSEE) Referenc

definition of a
e Architecture.

Those investigations are in support of the definition of a component-based

architectural approach for the rapid construction of PSEEs. I
progress.

These investigations were conducted within the "Architectures
Generation Process-based SEEs" project; they also revise and e
work. This document is to be the first in a series of Archite
delivered by this contract (pending continuous funding).

This document actually consists of eleven (11) reports and fou
which provide technical data related to the current state (art
SEEs including architectural recommendations, requirements, an
the data was gathered from national and international efforts

includes recent developments in the commercial sector and rese
key underlying assumption of this work is community participat
consensus; therefore, some of the documents have been jointly

members of the community.

t represents work in

and Models for Next
nhance prior related
cture Reports to be

r (4) references
and practice) of
d lessons learned;
and systems, and
arch programs. A
ion and community

developed with

14. SUBJECT TERMS
architectures, process, software engineering environment

15. NUMBER OF PAGES

116. PRICE CODE

=

17 SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION {19. SECURITY CLASSIFICATION ] 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT - o - A .
Unclassified Unclassified Unclassified S

NSN 7540-01-280-5500 Standard Form 298 {Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102




Accesion For

NTIS CRA&I
DTIC TAB
Unannounced

Outline Justification

oox

By

Distribution|

Availability Codes

. Avail and/or
Dist Special

0. Introduction to the report. W.,/

1. Lessons Learned in Designing and Implementing Life-Cycle Generic Models,
by M. Penedo.

2. Workshop Overview, by Narayanaswamy, K., et al.

3. Report on the 1989 Software CAD Databases Workshop., by L Rowe.
4. Life-cycle (Sub) Process Scenario, by M. Penedo.

5. ISPW9 Process Demonstrations - Summary, by M. Penedo.

6. SBUS: A Framework for Software Bus Comparison, by M. Penedo.

7. SEE Software Bus Survey, by C. Shu and M. Penedo.

8. ARPA Interoperability Matrix, By D. Heimbigner.

9. ARPA Interoperability Working Group - Summary Charts,
by D. Heimbigner and others.

10. Architecture Bibliography.

11. PSEE Tutorial: Trends in the Construction of Next Generation Software
Engineering Environments, by M. Penedo.




1 Introduction

This Architecture Report documents investigations towards the definition of a Process-based Software
Engineering Environment (PSEE) Reference Architecture. Those investigations are in support of the
definition of a component-based architectural approach for the rapid construction of PSEEs. It repre-
sents work in progress.

These investigations were conducted within the Architectures and Models for Next Generation
Process-based SEEs project; they also revise and enhance prior related work. These investigations
took into consideration recent developments in the commercial sector and research programs. This
document is to be the first in a series of Architecture Reports to be delivered by this contract (pending
continuous funding).

This document actually consists of eleven (11) reports and four (4) references which provide technical
data related to the current state (art and practice) of SEEs including architectural recommendations,
requirements, and lessons learned; the data was gathered from national and international efforts and sys-
tems. A key underlying assumption of this work is community participation and community consensus;
therefore, some of the documents have been jointly developed with members of the community.

As part of our community consensus formation activities, in the past few years, we took leadership
positions and active participation in various efforts in the community with respect to SEE definition,
standardization and assessment. Among the efforts we participated, we include: i) support and partic-
ipation in the organization of conferences and workshops such as the International Process Workshops,
the International Conference on Software Engineering, and the ARPA SEE workshops; ii) past involve-
ment with the NIST Integrated SEE Working Group which defined a SEE Reference Model for SEE
Frameworks together with with the European Computer Manufacturer Association (ECMA) TGRM
Working Group); iii) maintaining close ties with the major ARPA programs including Arcadia, STARS,
Prototech and DSSA communities; iv) serving as liaison between the American and European com-
munities including cooperating with the Eureka Software Factory Project; v) providing support to
Government activities/programs such as -CASE and the Software Technology Support Center (STSC);
and vi) keeping track of commercial efforts which are attempting to develop standard products or
candidates for consensus formation.

Attached Documents. The documents attached constitute this Technical Report. They document

architectural issues including integration, they survey and assess existing PSEE systems, they document
initial efforts towards a PSEE reference architecture, and they report collaborative activities in the
community. They are of four kinds of authorship, for which we will identify codes and associate with
the specific documents:

1. Project Reports (PR), i.e., documents generated solely by project members.

2. Community Reports (CR), documents co-authored or co-edited with members of the international
community.




3. Related Reports (RR), i.e., documents (co-)authored by project members on other projects or
activities.

4. External Reports (ER), i.e., related documents not co-authored by project members.

We also provide references to important related documents.

Outline

A. Documents related to the Database and Software Engineering Workshop, Sorrento, Italy, May 1994:
1. Lessons Learned in Designing and Implementing Life-Cycle
Generic Models, by M. Penedo. (RR)
2. Workshop Overview, by Narayanaswamy, K., et al. (ER)
3. Report on the 1989 Software CAD Databases Workshop., by L Rowe. (RR)

B. Documents related to the International Software Pfocess'Workshop, Arlie, October 1994
4. Life-cycle (Sub) Process Scenario, by M. Penedo. (PR,RR)
5. ISPW9 Process Demonstrations - Summary, by M. Penedo. (PR)

C. Documents related to specific work towards a SEE Reference Architecture.

6. SBUS: A Framework for Software Bus Comparison, by M. Penedo. (PR)

7. SEE Software Bus Survey, by C. Shu and M. Penedo. (RR)

8. ARPA Interoperability Matriz, by D. Heimbigner. (ER)

9. ARPA Interoperability Working Group - Summary Charts,
by D. Heimbigner and others. (CR)

10. Architecture Bibliography. (PR.)

11. PSEFE Tutorial: Trends in the Construction of Next Generation Software
Engineering Environments, by M. Penedo. (RR,PR)

D. References to related work towards a reference architecture for SEEs

- A Survey of Software Engineering Environment Architectural Approaches,
by Penedo et al. (RR)

- NIST/ECMA Reference Model (RM) for SEE Frameworks,
NIST Special Publication 500-211, Technical Report ECMA TR/55,
3rd Edition, August 1993. (RR)

- NGCR Reference Model for Project Support Environments.
Brown, A., D. Carney, P. Oberndorf, M. Zelkowitz - editors,
NIST Special Publication 500-213, November 1993. (ER)

- Principles of CASE Tool Integration, by A. Brown et al,
Oxford University Press, 1994. (ER)




Next section provides a summary of those documents.

2 Summary of documents

A. Documents related to the Database and Software Engineering Workshop, Sorrento, Italy,
May 1994.
They relate to “Object/Data Management” needs in PSEEs.

1.

Lessons Learned in Designing and Implementing Life-Cycle Generic Models, by M.
Penedo (accepted for publication)

Common data models and common process models are recognized as key integration ingredients
in Process-based Software Engineering Environments! (PSEE). This paper discusses some lessons
learned in designing and implementing such models with emphasis on Object Management (OM)
needs. The discussion is based on our experiences derived from prior and current work in process
modeling and implementation. '

. Workshop Overview, by Narayanaswamy, K., et al.

3.
|

This paper was written by the workshop chair and two rapporteurs summarizing the two days of
the workshop. There were 32 attendees from 8 countries. Highlights of the workshop included
the facts that: there is evidence that considerable amount of work exists towards the development
of DBMSs to support software engineering; however, most existing DBMSs still cannot support
all of the PSEE requirements. Object oriented database systems appear to provide good support
(as our experiences proved a few years ago). A key on-going experiment is the GoodStep project
which is using the O2 object-oriented DBMS as the back end for the Merlin process based sys-
tem and others.” Their experience matches our prior findings. We also identified the fact that
both communities (SEE and DB) have a much better understanding of each other’s needs and
capabilities as compared to last workshop, held in Napa Valley, CA, in 1989.

Report on the 1989 Software CAD Databases Workshop, by L Rowe.

This was the summary of the first workshop on databases and software engineering, held in
Napa Valley, CA, in 1989. At this workshop, specific features identified as needed were: object-
oriented data models, navigational and set-oriented query languages, complex object support, long
transaction support, derived data support, and alerters.

(Note: Penedo located this report for distribution to the attendees. Since it was not easily
accessible, it is included in this deliverable.)

!Process-based environments (PSEE) are environments where both the user interaction paradigm and the execution of
its components are process driven. ’




B. Documents related to the International Software Process Workshop, Arlie, October 1994
(both documents will be published in the Proceedings).

4. Life-cycle (Sub) Process Scenario, by M. Penedo.

In the last few years, the process community has defined a “process scenario” which describes
a sub-set of the software development process activities, to serve as a canonical example for
the community. It was done in conjunction with the International Software Process Workshops
(ISPW); Penedo participated in all working groups. In the first years, the scenario was used
to understand and compare process modeling notations. In the last two years, this scenario
is being demonstrated in existing research and commercial tools and PSEEs; it has served to
highlight the difference of existing approaches and to identify the strengths and weaknesses of such
approaches. Penedo was the coordinator of the last revision/extension of the process example and
the coordinator of the example/demonstration at ISPW9 which was held in October 1994.

This paper contains the ISPW9 scenario or process example. This year’s scenario is a revision of
the ISPW6 scenario, to take away some of its rigidity, to make it more realistic and tailorable, and
to add items related to human-computer interaction and computer mediated human cooperation.

5. ISPW9 Process'Demonstrations - Summary, by M. Penedo.

A process demonstration day was held at the 9th International Software Process Workshop
‘ (ISPW9), Arlie, VA, October 1994. The objective of the demonstration day was two-fold:

— to evaluate how different systems and environments support/guide users in the fulfillment of
their project activities, and

— to bring about technical issues identified by the different implementors in the context of their
formalisms and systems.

Eight systems were accepted for demonstration: Oikos, from Pisa University; Synervision, from
Hewlet-Packard; Hakoniwa, from Osaka University; LEU, from Lion; MVP-S, from Kaiserslautern
University; Oz, from Columbia University; Regatta, from Fujitsu; SPADE, from P. Milano. A
scenario example was defined (see document 4) to represent issues in the life of real projects and
to serve as a common example for demonstration purposes.

The demonstration day was a success since it provided visual means for understanding and dis-
cussing the various PSEE interaction paradigms. Many feel that interspersing demonstrations
with the workshop sessions will enrich the discussions and provide more concrete data for dis-
cussions. Since the audience consisted of mostly PSEE builders, there was a lot of interest in
understanding the architectures of such systems (not obvious during the demonstrations). It is
felt that a lot more discussion and understanding is needed about how those systems are con-
structed, how the architecture of systems support the specific process modeling and enactment




techniques, and what are the relationships among architectures, run-time support for process en-
actment, user interaction paradigms, and the various characteristics demonstrated. Architecture
depictions of the various systems are included in the appendix of this document.

This document gives some background to the scenario, describes the systems demonstrated, and
provides a bibliography of related documents.

C. Documents related to specific work towards a SEE Reference Architecture.

These documents represent work in progress dealing with issues of integration and interoperability
of PSEE components. This work is being done internally as part of this contract and externally, jointly
with D. Heimbigner from University of Colorado and the ARPA SEE Interoperability working group.

6. SBUS: A Framework for Software Bus Comparison, by M. Penedo, submitted to ICSE-
17 Workshop on Architectures for Software Systems.

This paper outlines an initial framework, denoted SBUS, for the characterization and comparison
of systems or mechanisms which are identified as software buses. “Software Buses” play an impor-
tant role in supporting component interoperability in Software Engineering Environment (SEE)
architectures. The SBUS framework consists of a set of attributes which together characterize
such systems; such framework is one of the elements of a PSEE reference architecture. This paper
outlines the SBUS attributes and characteristics and illustrates its use by characterizing aspects
of the Arcadia’s Q system.

An initial survey based on this framework appears in a technical report (document #7). Both the
framework and the survey represent work in progress.

7. SEE Software Bus Survey, by C. Shu and M. Penedo.
This document presents an initial survey of systems which have been characterized as software
buses and play an important role in tying together components in Software Engineering Environ-
ment (SEE) architectures. The systems surveyed are: HP’s BMS, Forest, ESF K/1’s Software
Bus, ESF Kernel/2r’s Muse, Polylith, Arcadia’s Q, Weaves. A framework consisting of attributes
and characteristics was defined and used for describing those systems’ characteristics.

8. ARPA Interoperability Matrix, by D. Heimbigner.

D. Heimbigner and Penedo are currently working on an interoperability framework which will ease
the task of evaluating existing interoperability mechanisms. This framework incorporates data
from separate studies, Heimbigner’s original matrix and Penedo’s SBUS model. By describing
existing systems using this framéwork, one should be able to understand the differences among
those existing systems. This framework is part of a PSEE reference architecture.

This paper summarizes Heimbigner’s interoperability matrix, as of December 1994. As of today,
Penedo and Heimbigner are discussing the merge of both frameworks.




9. ARPA Interoperability Working Group - Summary Charts, by D. Heimbigner, M.
Penedo and others. There were architecture/interoperability working groups formed at two
ARPA SEE meetings in 1994, one on February 14-16 and another one on Sep 21-23. Penedo
chaired the first one; at the latter meeting, D. Heimbigner took over the leadership due to the
uncertainty of continuous funding for the current contract. The objective of this working group
was to identify the current state of the art in this area and to draw a roadmap for ARPA activities.
The charts attached summarize the working group discussions.

During the meetings it was identified that CORBA (Common Object Request Broker Architecture)
appears to be the leading mechanism (for the time being) for object and tool interoperability in
PSEEs which are UNIX-based. It is believed that CORBA does not support all the needed
requirements but the support for CORBA seems to be strong among the software producers and
many implementations are starting to appear.

10. Architecture Bibliography. This is a list of papers related to PSEE architectures, collected
during the course of our investigations.

11. PSEE Tutorial: Trends in the Construction of Next Generation Software Engineering
Environments, by M. Penedo.
(Note: due to its length and the fact that copies have already been prov1ded to ARPA and
SPAWAR, this tutorial is provided as an attachment)

This tutorial surveys issues related to Process-based Software Engineering Environments (SEE). It
includes definitions and concepts, models, integration characterizations and architectural forms,
support for life-cycle process definition and enactment, and SEE reference models. It includes
examples of existing SEEs. An informal perspective of software engineering environment architec-
ture evolution is also presented indicating trends and future directions. It also includes cost and
productivity highlights. The trends include:

— In Architectures: Client-Server, Distribution, Autonomy, Interoperability, Active, Component-
based, Process-based, User-tailorable.

— In Processes: Architecture-driven, Reused-based, Design by Teams, Cooperative (CSCW),
Business-driven.

D. References to related work towards a reference architecture for SEEs.

This section contains references to (sometimes jointly co-authored) documents related to commaunity
consensus activities in the area of (process-based) SEEs. Those documents are not included here.
However, they reflect our active participation in community activities and illustrate the broad spectrum
of issues related to software engineering environments. The first document is our survey of commercial
and research SEEs and their mapping to a common SEE reference model denoted CEARM; the second
document is a joint ECMA /NIST publication, which is now in wide use in the community as a common




basis or model for describing SEE framework functionality; the third document is the PSE Reference
Model, which provides a basis for describing SEE User Services. All of these models can be elements in
a PSEE Reference Architecture.

e A Survey of Software Engineering Environment Architectural Approaches, by M.
Penedo, A. Karrer and C. Shu, TRW Technical Report IMPSEE-TRW-93-007, Novem-
ber 1993. SN -

This document contains the architectural survey which inspired our work in this project. It
summarizes our experiences in describing and comparing SEEs using a conceptual model denoted
Conceptual Environment Architecture Reference Model (CEARM); it also includes some of our
experiences in the development of the NIST/ECMA reference model. The systems surveyed
represent recent developments in environment architectures in the commercial sector and research
programs.

The systems investigated as part of the survey were: A Tool Integration Standard (ATIS), Arcadia-
1 Architecture, Atherton’s Software Backplane, Common APSE Interface Set, Eureka Software
Factory Architecture, ESF Kernel/2r, European Advanced Software Technology (EAST) Envi-
ronment, HP’s Softbench, Portable Common Tool Environment, Software Life Cycle Support
Environment (SLCSE), SUN’s Network Software Environment, Pact Environment. The lessons
learned as a result of this survey have also been collected in the document; a summary paper
entitled “Towards understanding Software Engineering Environments” has been written.

¢ NIST/ECMA Reference Model (RM) for SEE Frameworks.
This report is published jointly as an ECMA Technical Report and a NIST Special Publication.
[NIST Special Publication 500-211, Technical Report ECMA TR/55, 3rd Edition, August 1993].

Work in a Reference Model (precursors to reference architecture concepts) for Software Engineering
Environments (SEE) has been in progress for the past years both in the United States and Europe.
A key objective of the work in reference models for SEEs has been to find better ways to describe
SEEs and to assist the SEE architectural building process. It is hoped that the concepts described
within the reference model can guide the evolution of SEE environment architectures.

This document describes the RM and was published jointly by the European Computer Manufac-
turers Association (ECMA) and NIST. This RM is now in wide use in the community as a means
of describing and comparing SEEs. The Navy PSESWG? effort has also adopted and extended
the NIST model to include user functionality (see next document referenced).

Its authors are the leaders of the NIST/ISEE Working Sub-Groups: M. Penedo (TRW) for Ob-
ject Management, H. Hart (TRW) for Process Management, T. Oberndorf (NADC) for Interface

2Program Support Environment Standards Working Group, part of the Next Generation Computer Resources (NGCR)
program.




and Platform, B. Bagwill/M. Zelkowitz (NIST) for User Interface; P. Oberndorf/M. Penedo for
Integration; M. Zelkowitz (U. Maryland) was the document editor.

NGCR Reference Model for Project Support Environments, by Brown, A., D. Car-
ney, P. Oberndorf, M. Zelkowitz - editors, Technical Report CMU/SEI-93-TR-23, ESC-TR-
93-199, also published as NIST Special Publication 500-213, November 1993.

The Navy Project Support Environment (PSE) Working Group, part of the Next Generation
Computer Resources (NGCR) program, also generated a Reference Model for SEEs. This effort
has adopted and extended the NIST model to include user functionality. End-user services are
sub-divided into Technical Engineering, Technical Management, Project Management and Support
services. This RM does complement the NIST RM by going beyond framework characteristics to
include the project users’ functional capabilities.

Principles of CASE Tool Integration, by A. Brown et al, Oxford University Press,
1994. ‘
This is a recent book written by Software Engineering Institute personnel with many interesting
lessons learned. The book has the following aims:

— to assemble existing knowledge on the topic of integration in a CASE environment,

— to indicate the range of perspectives on the meaning of, and approaches to, integration in a
CASE environment,

— to raise awareness and understanding of the key aspects of CASE environment technology,
and the important role that it plays,

— to showcase SEI work in their CASE Environments project, and

~ to introduce a new model of CASE environment integration that can be used to analyze
existing CASE environment, and can provide the basis for constructing a CASE environment
with appropriate integration characteristics.




Lessons Learned in Designing and Implementing

Life-cycle Generic Models*

Maria H. Penedo
TRW

One Space Park
Redondo Beach, CA 90278

Abstract

Common data models and common process mod-
els are recognized as key integration ingredients in
Process-based Software Engineering Environments®
(PSEE). This paper® discusses some lessons learned
in designing and implementing such models with em-
phasis on Object Management (OM) needs. The dis-
cussion ts based on our expertences derived from prior
and current work in process modeling and implemen-
tation.

Introduction/Background.

There is currently a great deal of activity within the
software engineering community in the area of provid-
ing autornated support for aspects of the software de-
velopment process. While many successes have been
made in individual areas, perhaps the greatest chal-
lenge is to integrate these successes to produce an effec-
tive and integrated automated environment that sup-
ports the complete software development life cycle. A
unifying (product or process) life-cycle model, which
serves as a logical model for the integration of PSEE
components, is a key ingredient in support of data in-
tegration. Examples of such life-cycle data models are:
the Project Master Database Model (PMDB) [PS85)
and the SLCSE model [Tay89]. A key distinction be-
tween the PMDB model and the SLCSE model is the

*In Proceedings of the Database and Software Engineering
Workshop, Sorrento, Italy, May 1994

}Process-based environments (PSEE) are environments
where both the user Interaction paradigm and the execution

of its components are process driven.
2This paper contains revised excerpts of text from [PS91].

fact that the first was designed to be generic and the
latter supports a more specific family of processes con-
forming to MIL-STD-2167A.

Data models model data in applications; process
models model processes; these models can be imple-
mented in one or more data management systems
(DMS). Formalisms (sometimes also called data mod-
els) are used to provide representations for data or pro-
cess models. There are several well known data mod-
eling techniques and formalisms whose merits have
been documented in the literature. Recently these
techniques are being explored and enhanced for the
modeling of software engineering processes. Examples
of data formalisms are: relational, entity-relationship-
attribute, semantic data model, object-oriented. Ex-
amples of formalisms currently used for modeling pro-
cesses are: state transition models, object-oriented
models, rule-based models, Petri-nets, etc. The need
for more precise process models and formalisms which
are conducive to automation has been discussed in the
literature and the search for better models, formalisms
and supporting mechanisms continues, as shown by re-
cent published papers, including the ones submitted to
the International Workshops on the Software Process.

We have spent many years investigating process
modeling and implementation issues, as part of the
PMDB work. The original PMDB model [PS85] was
expressed in an E-R formalism; it defines a generic
life-cycle model supporting the full life-cycle process.
It consists of 32 entity types, approximately 200 at-
tributes associated with the various types, and 200 re-
lationships between the various types. It concentrated
on the life-cycle data and relationships even though it
did include aspects of the process embedded in it, as
illustrated by the entities Accountable Task {model-




ing development and management tasks), Milestones
(modeling certain project events) and Person (model-
ing process resources). The enhanced PMDB model,
denoted PMDB+ model [PS91], extended a subset of
the original PMDB to include explicit process behav-
ior. It uses an “extended E-R model” as its formal-
ism; the extension includes operations and conditional
events.

A large part of our latest investigations concen-
trated on gaining experience with executable process
models with the objectives of: determining the im-
pact of process encoding on SEE components such as
object management services, user interface manage-
ment services and existing tools. We feel that our
experience with alternative modeling and implemen-
tation approaches provided us with valuable insight
into many of the issues and solutions. Some of our ex-
periences with respect to the object management sup-
port for these models and their implementation are
described here. The full PMDB model can be found
in [PS84] and initial lessons learned in [PS85]. More
details of the lessons learned with the enhanced model
can be found in [PS91]; and lessons learned as they ap-
ply to evolution can be found in [Pen93].

Lessons Learned

Our first prototyping exercise implemented a sub-
set of the PMDB model in a relational data manage-
ment system. The objectives of this exercise were to
assess the validity of the PMDB model and to investi-
gate relevant issues associated with the auntomation of
such process models. Those investigations identified
weaknesses in both the relational and ER approaches
and identified representation requirements for environ-
ment support components with special emphasis on
object management (OM), including the need for ab-
stract interfaces, strong typing, computed attributes,
conditionally triggered procedures, integration of tex-
tual (e.g., files) and relational data, process-based user
interfaces, automated mapping support, consistency
and inconsistency management. A summary of con-
clusions and observations which resulted from this ex-
ercise is provided in [Pen86].

A few lessons learned from designing life-cycle data
models include:

o It can serve as precise data descriptions for tool
interoperability.

e It can serve as the user’s cognitive model for en-
vironment interaction.

o The model and its implementation should be sep-
arate but mappable to each other.

o Full life-cycle models are large and complex; par-
tition and consistency mechanisms should also be
provided.

e The number of relationships among elements of
the model is quite large.

o Different levels of granularity of data and process
need to be supported.

e The formalism language typically imposes con-
straints on the models.

o Evolution support is essential since the models
evolve.

More recently, we explored implementations in ad-
vanced data management platforms. The PMDB+
prototyping investigations were conducted using the
VBase object-oriented (O-O) database system [AHS87].
The modeling lessons came as a result of the exper-
imentation with the extended E-R formalism to de-
scribe the PMDB+ model; the implementation lessons
came as a result of the O-O prototyping and the con-
struction of a PMDB+ Viewer tool which supported
execution and viewing of the model.

Those lessons learned include:

o Designing for generic purposes. Our experience
has shown that generic models and generic en-
vironments are necessary if they are to support
companies like TRW where projects vary from
one another. Thus, the PMDB model had a
generic design assumption in order to be appli-
cable across projects, and to minimize changes.
Examples of entities are: person, milestones,
software component, tasks, documents. It did
not support specific techniques, methods or el-
ements. Those were to be instantiated or refined
for project specific purposes. Thus, the model
formed a kernel or a base model for the life-cycle.
This base model was applied in different contexts
and its generic features held well. It was success-
fully extended in support of specific techniques
such as CoCoMo [Boe81]; new types were easily
added and mapped via the relationships to exist-
ing types. It is worth noting that most of the at-
tributes needed by the CoCoMo technique were
already in the model or were easily added, e.g.,
number of lines of code, analyst and programmer
capabilities, software required reliability, and the
values of those attributes were easily accessed via
the relationships.




o Modeling of behavior and flow of control. We

modeled process behavior mostly by means of op-
erations associated with the various types. In
the current model, the ordering of execution of
operations is not prescribed, even though some
operations enforce constraints (which implicitly
may prescribe ordering). The specification of pro-
cess flow of control should be provided in process
models and definition mechanisms but not pre-
scribed in generic models, because they will vary
from project to project and as the model evolves.
The specific ordering can be defined when instan-
tiating generic processes into instances of process-
based environments.

Separation of model from implementation. We
have found necessary to distinguish between a
process model and its implementation. Examples
of such need include: to be implementation inde-
pendent, to serve as a user interaction paradigm
closer to user’s perception, and to support pro-
cess tailoring by non-expert users. We contend
that semi-automated means for translating be-
tween process models and their implementations
are necessary in order to support tailorability, ex-
tensibility, and time-constraint needs. This sep-
aration between model and implementation has
proven very desirable. It allowed us to distinguish
between the formalization of the life-cycle process
and the details of the implementation platform.
The semi-automated mapping also allowed for the
extensibility of the model with minor changes to
client applications which use the process imple-
mentations.

The PMDB+ model, being itself an object-based
system, mapped easily to the Vbase object-
oriented model with the state and behavior of
each PMDB object type encapsulated in a sep-
arate Vbase type. In our implementation, how-
ever, additional operations were associated with
the PMDB types in the object base; they were
used for implementation purposes and not in-
cluded in the model. In order to semi-automate
the mapping, a notation was defined to distin-
guish PMDB+ operations from other support op-
erations associated with the types; this way only
the PMDB types were retrieved for user consump-
tion. For this and other reasons, the ability to de-
fine sub-schemas to constrain access to (possibly
intersecting) subsets of operations is necessary in
underlying platforms.

o Mapping relationships. The full model is large

and complex requiring sophisticated semantic
constructs. The model also exposed the large
number of relationships which are needed and
frequently used for navigational purposes. That
indicates that relationships should be treated as
first class citizens in any system supporting the
implementation of such models. A known de-
ficiency of the object-oriented approach is the
fact that relationships are not first class citizens.
Since relationships are not primitive constructs in
object-oriented models, we emulated them using
properties; that required that we selected among
different strategies. Choosing those strategies im-
plies trade-offs with respect to: support for prop-
erties such as referential integrity; the facility of
using navigation/retrieval capabilities; and the
complexity of the generic mechanisms for map-
ping the model into the implementation.

Types as meta-types. The meta-type notion of
the object-oriented approach, where all aspects
of objects including their types are represented by
typed values in the system (with associated prop-
erties and operations), was key to allowing us to
write generic mechanisms for type and value re-
trieval. These generic mechanisms are an impor-
tant step towards supporting type evolution with
minimal impact on the environment.

Object management external interfaces. Program
callable interfaces are crucial in support of multi-
lingual environments and in support of environ-
ment evolution. One of the serious short-comings
of the selected system was the lack of a program
callable interface to the object store. To gain
access to the DBMS facilities, one had to write
programs in its own language. This restriction
made access to object base from other languages
besides C extremely inconvenient. Integration of
persistence with a process programming language
is conceptually appealing, but issues pertaining
to multi-lingual support, full transparent support
for persistence, and transaction management are
still yet to be resolved in an integrated manner.

Architecting for evolution. For evolution pur-
poses, it is essential to minimize the dependency
of process code on underlying platforms. Towards
this goal, we used the PMDB+ model as a concep-
tual interface technique, and defined and imple-
mented a PMDB+ model generic interface. This
interface provided a C interface to the PMDB+
model stored in the object base; its clients do not




need to know about the specific system or lan-
guage used to store and access the model. This
allows a possible change to a new storage system
or the incorporation of multi-processors without
changing the clients. Two key object-oriented fea-
tures for the development of the generic mecha-
nisms were the equivalence of data and meta-data
and dynamic binding. The generic interface also
supported type evolution with minimal change to
the application code.

Multi-lingual component communication. In-
compatibility between multi-lingual environment
components is a critical issue of software develop-
ment environments that needs to be addressed.
During the construction of the PMDB+ Viewer,
an exercise to interface an Ada UIMS component
with the the object base’s language did not suc-
ceed since their run time environments could not
co-exist within the context of one Unix execut-
ing process. This conclusion led to further explo-
ration of a client-server architecture to provide for
multi-lingual/multi-type communication. These
explorations fostered a collaborative effort be-
tween TRW and University of Colorado towards
the development of a communication model to
achieve a language-independent interprocess com-
munication mechanism; this model later led to the
development of the Arcadia Q system [MHLO92].

Separation of specification and implementation.
Separating the external interface of a type from
its internal implementation details, similar to Ada
and other languages supporting abstract data
type concepts is widely considered as a desirable
characteristic. This way, client applications do
not need to know about their internal represen-
tation and method code can be modified without
recompilation of the specification for that object
or any client which uses it.

Run-time binding of methods. Late-binding or dy-
namic binding is extremely desirable for extensi-
bility purposes since it enables different objects to
respond differently to the same operation. Based
on the direct type of the operation invocation’s
first argument, methods corresponding to that di-
rect type will be dispatched. We made use of
this feature extensively in the implementation of
generic mechanisms.

Trigger invocation and its interaction with trans-
actions. Mechanisms such as triggers were ex-
tremely useful in support of the implementation

of conditional event execution. In our case study,
triggers can be attached to operations as well as
properties. A trigger can be invoked at the initi-
ation or completion of a single operation. When
a trigger is attached to a property, it can be in-
voked when the property is initialized, fetched, or
updated. Using triggers with concurrency code
led to interesting problems:

— A trigger may be activated due to a change
of a property value. However, if that change
was caused within a transaction which was
later aborted, the trigger cannot be rolled
back.

— There was no support for deferring the acti-
vation of a trigger until the end of a frans-
action. There should be some control over
whether the trigger is to be invoked imme-
diately or deferred until transaction commit
time.

Other not so commonly found desirable OM capa-
bilities in support of process implementations are as
follows:

o Semantic representations in type definitions, i.e.,
the ability to specify type or object semantics and
constraints as part of their type specifications.

e Dynamic creation of object types, atiribuies and
relationships, e.g., the ability to support introduc-
tion of new PMDB object types and relationships
from an executing process program.

e Access control mechanisms associated with iypes,
operations, and properties, i.e., the provision of
an access control facility for specifying access con-
straints on, minimally, object instances.

Acknowledgements

The author would like to acknowledge E. D. Stuckle
and C. Shu, co-authors of the models; and I. Thomas,
for many interesting and valuable discussions about
the design and implementation of life-cycle models.
This work was supported by the Defense Advanced
Research Projects Agency/Information Systems Tech-
nology Office, ARPA Order 7314, issued by the Space
and Naval Warfare Systems Command under contract
N00039-91-C-0151.




References

[AHS7]

[Boe81]

[MHLO92]

[Peng6)

[Pen93]

[PS84]

[PS85]

[PS91]

[Tay89]

T. Andrews and C. Harris. Combin-
ing Language and Database Advances in
an Object-Oriented Development Envi-
ronment. SIGPLAN Special Issue (also
in OOPSLA’87 Conference Proceedings),
22:430-441, December 1987.

B. Boehm. Software Engineering Eco-
nomics. In Prentice Hall, Inc., Englewood
Cliffs, NJ, 1981.

M. Maybee, D. Heimbigner, D. Levine,
and L. Osterweil. Q: A Multi-lingual Inter-
process Communications System for Soft-
ware Environment Implementation. Tech-
nical Report CU-CS-92, Department of
Computer Science, University of Col-
orado, 1992.

M.H. Penedo. Prototyping a Project Mas-
ter Database for Software Engineering En-
vironments. In Proceedings of the Znd
ACM Software Engineering Symposium on
Practical SDEs, Palo Alto, CA, December
1986.

M. H. Penedo. On the Extensibility of
Common Models in PSEEs. In Proceedings
of Process Evolution Workshop, Montreal,
Canada, January 1993.

M.H. Penedo and E.D. Stuckle. Integrated
Project Master Database - IR&D Final
Report. Technical Report TRW-84-55-22,
TRW, December 1984.

M.H. Penedo and E.D. Stuckle. PMDB - A
Project Master Database for Software En-
gineering Environments. In Proceedings of
the 8th International Conference on Soft-
ware Engineering, London, England, Au-
gust 1985.

M.H. Penedo and C. Shu. Acquiring Expe-
riences with the Modeling and Implemen-
tation of the Project Life-cycle Process -
the PMDB work. IEFE and British Com-
puter Society Software Engineering Jour-
nal, September 1991.

B. Taylor. The SLCSE Environment
Database. In Proceedings of 1989 ACM
SIGMOD Workshop on Software CAD
Databases, February 1989.




Workshop Overview

K. Narayanaswamy, J.C. Franchitti, and R. King
August 22, 1994

The workshop on databases and software engineering was held on the two days preceding
ICSE '94. There were 32 attendees, from 8 countries. Most of the attendees were from
the Software Engineering community. Each attendee was required to submit a paper in
order to be admitted to the workshop; a couple extra people were admitted on-site at the
last minute, since there was extra space in the room. There were no paper presentations;
rather, the workshop was organized into a series of in-depth discussions centered around
specific research questions. In each case, the research question was motivated by a brief talk
delivered by one of the workshop participants.

The authors of this overview would like to point out that this summary is our impression
of what was said at the workshop. We apologize to any attendee who feels that his or her
statements have been misrepresented.

1 TUses of Conventional Databases in Environments

The first talk, by Alberto Mendelzon, described work done in the context of the AT & T 5ESS

switch system. Conventional databases were used to store information regarding software

project management, testing, reuse, and archeology. Mendelzon’s talk explored some of the

major issues and tensions in using database technology:
e Organizing databases for exploration and navigation rather than queries.
e Performance trade-offs of expressive query languages.
o Encapsulation of information in objects versus use of relations.

The research topics raised by Mendelzon were as follows:

1. Incremental query computation and display: small changes to data (e.g., change to a
single function in a large system) should not force expensive queries to be computed
from scratch.

2. Visualization and animation techniques need to be developed for temporal queries.
This could involve development of a set of formalisms for visualization and abstraction.

3. Databases need to be integrated better with the software environments and software
processes.




In the ensuing discussion Mendelzon focused on the last two issues. Additional concerns were
raised, some of which are known shortcomings of databases in accommodating the software
engineering domain. These include the large number of types of objects in the software
engineering domain, versioning support, and flexible transaction support.

One of the issues that received attention in the discussion was the following: Fzactly what
is stored in the database? Presumably software objects of very different granularity (variables,
types, statements, functions, procedures, modules) will be in the database. All of these have
relationships to other objects. Points were raised that neither traditional relational databases
nor object-oriented databases were adequate to handle these kinds of objects. In addition,
some of the information regarding software objects is likely to be unstructured. Techniques
for information retrieval in other domains (e.g., markup languages, embedding schema with
all data, etc.) seem to be relevant to querying such data.

In looking more broadly at the question of how the software engineering domain was
different from other database application domains, it was felt that perhaps if software engi-
neers understood their processes as well as bankers and airline reservation managers, then
databases could be better tailored to meet those requirements. However, in the interim,
there also seemed to be a general consensus that database management systems are simply
not packaged to be as customizable and “open” with pluggable components implementing
orthogonal features that a person can select from. Such an architecture would afford the
kind of flexibility needed to deal with the software engineering domain.

2 Adapting Databases for Software Engineering: The
GoodStep Project

Wolfgang Emmerich described the GoodStep Project, an effort to use the O2 object-oriented
DBMS in the software engineering domain. Software objects are stored as abstract syntax
graphs. New tools can be built in the O2 language itself, and existing tools are handled by
building O2 wrappers for those tools, so that they can be integrated into the environment.

This presentation, more than any other at the workshop, seemed to generate significant
discussion; for most of us, it was the first true partnership that we were aware of, where
the goal was to get database and software engineering researchers collaborating actively on
a substantial development.

What is interesting about the GoodStep experience is that certain key capabilities had to
be added to the 02 DBMS before it could be used in this domain. This work could provide
more general guidelines about how to architect software engineering databases in the future.
The key capabilities that were added to O2 were:

e Versioning of objects.
o Active database capabilities.

The discussions following Emmerich’s talk centered around questions of boundaries be-
tween the various components within software engineering environments. For example,
should knowledge of state change be built into tools or into the logically centralized DBMS?
Good arguments can be made in favor of each choice. The present problem is that databases

2




fold all such capabilities into a single, monolithic bundle. The workshop consensus seemed
to be that all basic, primitive capabilities must be part of the database, but the databases
should be componentized with standard interfaces, so that different kinds of mechanisms
and policies can be realized without undue difficulty’. Unfortunately, database systems are
simply not architected as a set of cooperating but replaceable components, with well-defined
interfaces. However, it was noted that many database researchers and vendors are now
moving toward such Object Service Architectures (OSAs), and it is expected that some of
the so-called ”next-generation” object and object/relational DBMS’s should be much more
flexible in this regard. '

3 Persistent and Database Programming Languages

In sharp contrast to other presenters, Ron Morrison and his colleagues (who paraded up
one after the other with surprising discipline with respect to using up time) presented argu-
ments in favor of using persistent programming languages as the vehicle for creating tailored
database applications for software engineering that could be superior to using standard
databases in several ways:

o Applications in persistent languages will always perform better, because they can be
optimized.

e Persistent language applications can be engineered to evolve more gracefully using
ideas such as change absorbers, automatic and partial transmitters, etc.

Morrison and his colleagues argued that starting from any traditional DBMS, whether re-
lational or object-oriented, would be the wrong choice because all kinds of inflexibility is
inherent in the database, and one must live with the design decisions that are hard-wired
into the DBMS. It is better, the argument went, to start with a uniform persistent foundation
provided by a persistent programming language.

The discussion following the "Morrison, Inc.” talks centered on the fact that, with persis-
tent programming languages, one simply does not have any well-defined, reusable building
blocks or components in the environment. Hence, there is likely to be a lot of wheel rein-
vention — because there is no current solution to program reusability. For example, DBMSs
already have machinery to support a team of users through transaction mechanisms, whereas
with persistent languages everything must be programmed from scratch. Many in the group
opined that the community needs to better understand the trade-offs involved so that one
can sometimes use off-the-shelf components and build some components with persistent pro-
gramming languages. '

In a later talk, K. Narayanaswamy presented notions that originated in DBMSs that
could usefully be incorporated into “regular” programming languages. These features in-
cluded schemas (domain models), atomicity of collections of state changes via transactions,
consistency through use of integrity constraints, and event driven computations. It was

1We note that at this point in the workshop, questions about monolithic DBMS architecture had already
emerged as a key discussion point, as a result of Mendelzon’s talk.




posited by the speaker, based on his group’s experiences with relational abstraction exten-
sions to programming languages, that these kinds of features were very useful in general
purpose programming languages.

Vigorous discussions ensued. Some argued that traditional databases simply did not
afford the sophisticated typing mechanisms afforded by programming languages. As a result,
it is hard to build general purpose applications on top of database management systems.
Others argued that databases were inherently multi-user, and notions of transaction and
data integrity made no sense in any other case. Yet, with the advent of persistent and
database programming languages, such rigid distinctions are becoming increasingly hard to
justify.

4 Impact of Process on Database Support

Israel Ben-Shaul described work on the Marvel process-centered environment at Columbia
University, analyzing the database and its role in such environments. These projects have
created their own object stores, including active database capability and flexible transaction
management to support teams. As with the GoodStep Project, it is interesting to note that
no off-the-shelf database or system satisfied the requirements of these projects.

The discussion following this presentation examined how the introduction of process
might impact upon the requirements for a software engineering database. Some in the au-
dience vigorously questioned whether introduction of process materially changed anything
from the perspective of database support. However, it was clear that support for process
implies events as first class objects, which usually has an impact on the database support,
because the underlying database must be willing to notice events and notify the environment
about events. Ideally, in any environment, one would like the ability to replace one database
with another. Unfortunately, this usually alters basic process-related capabilities - for ex-

~ ample, mechanisms for state changes and events. Once again, this seems to argue in favor

of database components with well-specified state-change and event protocols rather than a
monolithic database, which is inscrutable and inflexible with respect to these capabilities.

5 Interoperability Concerns in Software Engineering
Databases

Nabil Kamel described one kind of interoperation involving the use of information retrieval
techniques to formulate queries spanning across multiple, heterogeneous repositories. Some
of the techniques he described (based on markup languages) were noted to be very good at
extracting useful semantic information from unstructured data. With Kamel’s work, users
could not directly update the data in the repositories — whereas handling distributed change
is clearly a major concern of software engineering environments. Nevertheless, some of the
issues raised in this were quite relevant to software engineering.

The state-of-the-art in heterogeneous database work is very much Download and Read.
However, one can envisage adding more sophisticated support for distributed database up-
date, incorporating support for sophisticated transaction management required by software




engineers. Other research issues were also raised during the discussion, such as how one
might add support for updates to Kamel’s scheme, propagation of database updates to
remote databases, schema integration issues in a network of databases, and whether it is
reasonable to require a centralized (meta)model which has information about the data in
each of the individual repositories, etc.

Lee Osterweil and Peri Tarr described the Arcadia Software Environment Project, and
its experiences vis-a-vis interoperation of heterogeneous components. There is heterogeneity
(and need for interoperation) at the level of storage management, at the level of database
services, and at the level of language interfaces (based on abstract data types) to object-
management services. A lot of experimentation has been carried out on interoperation within
this project including the use of centralized databases, federated databases, multiple stand-
alone databases using RPC-based communication, and ad-hoc tool wrappers.

This presentation, like the GoodStep project, generated much active discussion, which
focused on what might be the general lessons of the Arcadia Project. For example, are there
general guidelines about the level at which interoperation should occur and the characteristics
of each level? What are the trade-offs of the different mechanisms for interoperation that
ARCADIA has experimented with?

Another interesting point was that, in contrast to GoodStep, the Arcadia Project decided
not to use tool wrappers for interoperation because, in general, wrappers can be difficult to
build for certain tools (e.g., interactive editors).

During the discussions, it was brought to light that the Arcadia Project promotes inter-
operation at many levels of the architecture, by description of interfaces as abstract data
types. In general, Arcadia, because of its emphasis on process, strove for interoperation at
the language level. Perhaps because of this, interoperation at the artifact level, which seems
desirable, is only now becoming a serious focus of attention.

6 Events and Transactions

The workshop’s last talk was provided by Andy Schurr. The talk focused on events and
transactions. In particular, he examined the issue of what would happen when a transaction
is aborted. The scenarios he discussed were as follows:

1. Scenario 1: triggered action modify the same database:

e Aborting transaction undoes side effects of triggered actions.

e Database management system aborts transaction without raising events (i.e., no
event is needed).

2. Scenario 2: triggered action modify foreign database.

e We have to abort transaction of foreign database.

e Database management system modifies foreign clients” with ”start/commit/abort”
events (1 event is needed).

3. Scenario 3: triggered action modify all kinds of data.




e We have to undo effects on foreign data step by step.

e Database management system has to generate sequence of inverse events to com-
pensate for actions that have to be undone (many events are needed).

After this talk, the discussions centered around how events could be used to keep a
federation of databases consistent — for example, each event can modify a foreign database
by exporting partial results. Of course, in this case, both the database management system
and applications programs must tolerate inconsistency for the duration when the events are
performing their updates on databases.

7 Retrospective and Assessment

Database management systems and database-like notions have been seen as relevant to soft-
ware engineering for some time. Some of these ideas first crystallized at the "NAPA” work-
shop (held in Napa Valley in 1989, with approximately an even representation by software
engineering and database researchers). For example, the NAPA workshop laid out the re-
quirements of a software engineering database at a fairly high level of abstraction - a laundry
list of desired features that traditional databases, at that time, were incapable of providing.
We attempted to avoid discussing these broad requirements in Sorrento, in order to focus on
techniques to address these requirements. ‘

At this workshop, tellingly, there was little dispute on the requirements of a software
engineering database or bickering about terminology and competing world views. There are
two explanations for this phenomenon:

e The composition of the group was much more homogeneous, with most in the group
being software engineers. Very few in the group considered themselves “mainstream”
database researchers. This greatly reduced the opportunities for clashes.

o At least among the software engineers, there is some consensus on the basic require-
ments of a software engineering database. The emphasis, this time, was clearly on how
one might go about building one of these things.

At the Sorrento workshop, it was evident that considerable amount of work had indeed
been devoted to development of databases to support software engineering. There are several
major projects such as Arcadia, GoodStep, Marvel, etc., which have already examined issues
of object management in depth. The Marvel Project has chosen to build its own object
management system, because no general purpose system was found to be flexible enough
for a process centered environment. However, in the GoodStep project, there is a large
effort to extend a general-purpose database, 02, with capabilities (such as versioning, and
event-based computation) to make it suitable for software environments. Arcadia has worked
with existing object bases and has built its own, with more of a focus on heterogeneity and
interoperation, the assumption being that there will never be "one” software environment
database.

From a research stand-point, the following themes emerged from this




o If general purpose databases are to serve software engineers, they must be architected
not as a single monolithic, “take it or leave it” bundle of features. Rather, databases
must be architected as a potentially reconfigurable set of components, each supporting
some ideally orthogonal database feature, with standard interfaces. This kind of design
has the potential of allowing software engineers to customize databases to their tastes
by replacing some components with others as their needs dictate. The results of the
GoodStep Projects and similar efforts to adapt general purpose databases to software
engineering will be interesting to monitor. ‘

o The other thrust of research (embodied in the work on persistent programming lan-
guages and database programming languages) essentially abandons the hope that
“standard” database technology will ever completely support software engineers, choos-
ing instead to incorporate useful database-like notions (e.g., persistence, relations,
queries, etc.) into programming languages. The problem with this approach is that it
does not seem to leverage off of pre-existing components, advocating that all repository
support be programmed from scratch.

e People building process-centered software engineering environments are inducing their
own database requirements. This workshop examined the impact of process on database
support at length. An exemple of this kind of situation is the MARVEL Project, whose
developers created their own objectbases and repositories because they could not find
adequate support for process notions in standard database technology.

e Heterogeneity and interoperability of various kinds of repositories and tools has al-
ready emerged as a major problem in large environments. This has spawned several
research issues including the need for interfaces and standardization of environment
architectures.

Going in, the goals of the Sorrento workshop were broadly to follow-up on the NAPA
workshop, assess the state of the art, and, in the best case, develop a joint research agenda
for the software engineering and database communities.

In terms of the above goals, the Sorrento workshop was able to conduct a reasonably
detailed assessment of the state of the art in building databases for software engineering.
However, no explicit joint research agenda was agreed upon by the workshop, though some
issues, such as the monolithic architecture of DBMSs and interoperability of heterogeneous
components, imply directions for future work. The lack of a precise agenda was largely a
result of the rather minimal representation by the database community. And, because the
workshop participants were mostly software engineers, the ultimate impact of the workshop
on the larger database research community is unclear at this point.




Elsevier Science Publishers B.V. (North-Holland) 719

INFORMATION PROCESSING 89, G.X. Ritter (ed.)
£ IFIP, 1989 ' ‘

Repor_t on the 1989 SOFTWARE CAD DATABASES WORKSHOP | ‘
Lawren‘c.e A ROWE

Computer Sciénce Division-EECS, University of CAIifofnia at Berkeley
Berkeley, CA 94720, US.A. : '

A workshop was held to develop a better understanding of the features and database requirements of

software development environments. It was organized into a series of moderated discussions between
all participans, | - R ;

The major conclusion was that softwarc development tools need most features found in commercial

relational database systems and many features found in next generation object-oriented database sys- £
tems currently being developed. Specific features required include: object-oriented data models, navi- E

gational and set-oriented query la.ngﬁigm, complex object support, long transaction support, derived :

data support, and alerters. It was also apparent that better logical and physical database design tools

would significantly improve the development of these new systerms.

1. Introduction

A two day workshop on the topic of software CAD
databases was held in Napa California on February 27-28,
1989. Approximately 10 people from the database com-
munity and 40 people from the software engineering com-
munity attended the workshop. The group included a mix-
ture of people from academia and industry. Attendance
was limited to encourage dialog between the two commun-
ities. The artendees were selected by a program committee
that read position papers submitted by people who wanted
to participate. These posi?on papers were published in 2
workshop proceedings [1].

The goal of the workshop was to- develop better
understanding in the software engineering and database
communities about the database requirements for software
CAD databases,” the capabilities of existing commercial
database systems (DBMS), and the capabilites of next gen-
eration object-oriented database systems (OODBMS) that
are currentdy being developed. The workshop was organ-
ized into four sessions that covered the following topics
(the session leader is listed in parentheses):

SDE Services

(B. Boehm, TRW)

Database Requirements for SDE’s
(W. Paseman, Atherion Technology)
Alternative DBMS Architectures
(D. DeWirt, U. of Wisconsin)
Workshop Summary

(L. Rowe, U.C. Berkeley)

Each session began with a short presentation on the issues
and followed by a moderated discussion. A desi gnated per-
son took notes during each session. These notes will be
published at a later date.

This paper summarizes the session discussions and the
conclusions the group drew at the conclusion of the
workshop. It was not possible to have all anendees read

‘and comment on the paper due to tight publication dead-

lines so I apologize in advance for any errors or omissions.
The remainder of the paper summarizes the discussions in
each session.

T A limited number of copies of the proceedings can be ordered from Sharon Wensel who can be contacted
by phone (415-642-4662), email (wensel@posigres.Berkeley. EDU), or by postal mail at the same address as the

author,

¥ One problem that immediately became apparent is that there is no generally agre

ed upon term for program-

ming environment tools. The term software CAD (SCAD, pronounced *sess-cad’") was suggested by Bill Scherlis
2t DARPA. In the software engineering community people use other terms including: inteyried project support
environments (IPSE), software engineering environments (SEE), and software development environments (SDE).

In the remainder of the paper [ will use the term SDE.




720 L.A. Rowe

2. SDE Services L
“This session addressed the services that 2 SDE system
should provide. The goal was to identify the data that
should be stored in 2 DBMS and the kinds of operations
that ‘might be performed on that data ‘Following this dis-
 cussion, scveral people presented short *‘war stories”
* aboutther anempts o bullda SDE's on a DBMS.

* A SDE database must include all information relating
to the software lifecycle’ process. This information
inclodes: . oo '

1 Productdaxa (e.g., specifications, code, documenta-
R N A _ _
2. " Resource data (e.g., people, facilities, “equipment,
T budgers, eic). - |
3. Management daa (e.g., schedules, action items, prob-
lem reports, etc.). :
Figure 1 shows several queries that might be answered by
querying this database. The first query involves complex
queries over data that is derived from the data stored in the
database. The second query may require a change to the
product definition (i.c., application schema change). The
third query triggers an automated activity. The fourth
query shows an example of a fine granularity query on the
source code. And finally, the fifth query is an example of a
fuzzy query. o
The database people at the workshop claimed that
queries one, two, and four can be solved with conventional
DBMS’s assuming that reasonable database designs are
~ used. Queries three and five, on the other hand, are much
harder. The ensuing discussion identified several issues
related to database suppont for SDE’s including the fact
that current commercial DBMS’s provide inadequate sup-
port for dynamic changes to the database design (i.e.,
schema evolution), derived data (i.e., data computed from
data swored in the database), complex objects, and version
control.

Several people presented *“‘war stories’ about their
auempts to build SDE’s on a DBMS. William Paseman
described the evolution of the Atherton Technology pro-
ducts from a programming language environment too! to an
integrated project support eavironment. The programming
language 100! supported multiple user access to source
code and cross-reference data. The IPSE added suppor for
management conrol data.  Atherton has built an object
Storage system that supports version and configuration
management. They concluded that a programming
language environment tool does not require sophisticated

Query 1

List the programmers and managers of all tasks on the critic
cal path with over 5 days of slippage in their current mij,.
stones. ' 7
Query2 - . o

Take the *‘computer experience™ cost driver atmibute for
each m§nd in the system and split it into the *‘compute:
experience” for the host-system and target-system, -

Query 3 o
Perform an appropriate set of regression tests and Teport the

. possible adverse side-effects of every module change.

Query4
List all exceptions that could be raised by the system for
which there is no exception handler.

Query 5

If we change the security level of a specific piece of dara.
describe how it will effect the security of the complete da- .
tabase.

Figure 1: Example queries.

database services (c.g., sharing, access control, and associa-
tive queries) but that it did need good data modelling,
efficient support for fine granularity objects (i.c., abstract

syntax tree nodes) and navigational queries (i.c., get next

object given an object identifier (OBJID)

Dennis Heimbigner from the University of Colorado
at Boulder described his experiences developing a system

- that manages requirement specifications (REBUS) on top

of the Cactis research prototype DBMS [3]. The novel
feature of Cactis is that it supponts automatic recomputa-
tion of derived data in the database.t Heimbigner had to
develop an interface between ADA and Cactis. He
described a variety of problems with interfacing an existing
programming language w0 a8 DBMS that are well known in
the database community (e.g., type compatibility, incompa-
tible data models, exc) Other problems he described
related to the fact that Cactis was a research prototype that
did not provide all the functions a commercial DBMS pro-
vides (e.g., dynamic schema changes, secondary indexes,
sophisticated query optimization, and transaction manage-
ment). This discussion raised an issue that came up several
times during the workshop. A SDE has many database
requirements that can be satisfied by features found in dif-
ferent DBMS's. The problem is that no single DBMS pro-
vides all the required feanres. ‘

§ An object identifier is a unique identifier assi gned by the DBMS that never changes [2). -

* Cactis uses an atribute grammar to specify the derived data computation. Other rescarch database sys-
tems are exploring the use of rules to specify derived data (c.g., POSTGRES [4] and STARBURST [5}).




The 1989 Sofrware CAD Databases Workshop 721

Mark Dowson, cmﬁ:ntly at the Software Productivity
Consortium (SPC), described two systems: one built on a
custom DBMS and one thax is bcmg built on a commercial

'DBMS. The ‘first system, called ISTAR, was built on a

edcratcd DBMS, that is, a collection of independent com-
municating DBMS 5. Thc advantage of this approach is
that it may be possxble to integrate existing tools into a
SDE by interfacing the tool-specific DBMS to the fcdcrawd

) DB\AS Thc dzsadvantagc 1s that a fedemcd DBMS is -

. tons, rcphcaxed daxa, and camiog demgn and mmmcnancc)

(6). ‘In most cascs an mdcpcndcm "DBMS cannot be

"changed so it may be nnpossnblc to lmplcmcnt all required

facilities (e.g., dxsmbumd transacnons require that the

fedcrated database inaster _process be able to access the
} local database lock tables or o set timeouts on transactions

to implement distributed deadlock detection). In addition,
Dowson noted the problems associated with building a cus-
tom DBMS. Specifically a DBMS ‘is a large complex
software system that requires considerable resources to
build and maintain. He also described an effort at SPC to
use a commercial SQL-based DBMS to build a SDE. The
primary problem that they have encountered is that the con-
ventional transaction model is not appropriate for SDE’s.
This topic is discussed in more detail below.

The final *‘war story”” was presented by Ian Thomas
from GIE Emeraude. He described the PCTE project’s
Object Management System (OMS). A major goal of
PCTE is to create a tool interface abstraction that allows
existing tools to be integrated with the SDE. OMS has an
entity-relationship model with some object-oriented capa-
bilities (e.g., atribute and relationship inheritance). Two
problems were encountered. First, interfacing existing
lools to a SDE is a very hard problem. And second,
dcvcloping a good database design that supports tool
integration s difficult. Several people who have tried to

-build SDE’s on databases commented on the difficulty of

developing good database designs. The importance of
tood design tools and the ability to rapidly change a design
re well-known problems in the database community.

While some progress on the database design problem
has been made in the past decade, too much expertise and
cffort are required to build a complex database application.
Database systems should monitor access patterns  and
tomatically change the storage structures so that queries
an be executed cfficiently. In additon, better support is
“ceded 10 reduce program and data translation required
*hea the logical database design is changed.

Extensible data model. _
Support for meta-schemas (i.c., schemas stored as data).
Operations stored with objects and eacapsulation.
Explicit relationships.
~ Suppon for derived data (i.c., rules).
Transitive closure queries to access bierarchical data.
Multiple programming language imerfaces.
Query optimization and indexing.
Complex object support.
Support for large data sets.
Version support.
Automatic selection of swnge strocheses.
Comprehensive access control facilities.
Bulk data load and unload.
Short and long transaction support.
Crash recovery.
Undo facility.
Portable DBMS (i.¢., it must run on many platforms).
Client-server architecture,
Distributed database support.
Acceptable performance.

Figure 2: SDE database requirements.

3. Database Requirements for SDE’s

The second session explored in more detail some of
the database requirements that were identified in the first
session. Several lists of damabase requirements for SDE's
have been published. Figure 2 shows a list developed by
Maria Penedo from TRW that was discussed during this
session. While a consensus did mot emerge, several dif-
ferent viewpoints did emerge during this discussion. First,
several database people argued that most of these require-
ments have already been addressed by commercial rela-
tional DBMS’s or are being addressed in one of the
research prototypes that are currently being developed. A
second viewpoint was offered by some of the software
engineering people who were umsure that a future, unk-
nown, and unproven DBMS that would solve the SDE
problem will be forthcoming within a reasonable
timeframe. Finally, others argued that a radically different
open database architecture was meeded that would allow
programming languages to selectively use powerful data-
base features (e.g., associative access, crash recovery, etc.)
on data in the database and non-persistent data created by

the program. This last proposal is discussed in more detail
in the next section.

The remainder of this session covered a variety of
topics on transactions, query optimization, data models,
and historical databases. The most interesting discussion
centered around the topic of transactions. Gail Kaiser from
Columbia University presented a short overview of the

‘....__,._._.
iy




S22 e . - - - LA Rowe

capabilities of ;_transaction system and the conventional
DBMS strategies that are used s implement these

. capabilities. cheral pmblcms were 1dcnnﬁed mcludmg
" the followmg

1 SDE’s need more capabthns than 2 eonvcnnonal

transaction system prov:dcs. Spcaﬁally, aSDEmust -~

bc able to managc mconsxswncy For examplc, 2 tool
- might require ‘consistency within 2 complex object
such as a program module but inconsistency between
complex ‘objects such as the other modules that use
the modnlc being modlﬁed by the tool. Another
: example is that a tool may m 0 enforcc con-
.- sistency, but delay nouﬁcanon o m tha1 an updatc
hasbcenmadcwthedaxabase

2. - SDE’s nced to ‘support multiple. p'occsscs wuhm 8

single’ uansacnon For cxampl:., two tools running on
a workstation may be showing different views of the
same data (e.g-, the source code for 2 procedure and
the call graph for the system). Updates can be made
10 the data through cither tool but the database should
see them as one transaction.

3. A SDE needs efficient support of dxffcrcnt types of
. transactions. -Some applications read and update rela-
tively | lmlc data in a transaction. These transactions
are called short transactions. Other applications exe-
cute u-ansacnons that run for a Jong time while the
user browses and updates many different objects in
the database. These transactions are called long tran-
sactions. Conventional DBMS’s provide excellent
support for short transactions. However, these sys-
tems have trouble with long tansactions because
users are prohibited from accessing the data read and
written by the transacrion.

Kaiser described several approaches that researchers
are experimenting with to solve these problems. The first
approach uses nested transactions [7]. A nested transaction
allows a transaction to spawn a sub-transaction that can
commit before the parent transaction commits. The Sun
Newwork Software Environment uses mested transactions
{8]. In both systems a user can make several changes to 2
virtual copy of the database. These changes can be viewed
as nested transactions on the virual database within the
larger mansaction that will be completed when these
changes arc merged back into the mmin database. This
approach solves problems 1 and 2 above.

A second approach to solving some of these problems
is to use naming domains to control access to the database.
In a naming domain, all versions of objects are retained. A
user operates on a *‘configuration” that defines a set of
object versions. A transaction is executed with respect to
an initial configuration. An update transaction that com-
mits creates a new configuration. Naming domains can be

used to solve problem 1 above, namely, managing incon.

sistency between complex objects. This approach is being

_investigated in the COSMOS system [9].

. A thid approach is called pamcxpanz transaclions
{10,11) Thc ‘idea is that several processes can participaie in

the transaction. T “Transactions are named so that a process

can join a runmng transacnon‘ Consequently, multiple

'processes can execute within a single transaction (i.c., it
_solves problcm 2 above). Each process sees the database

with all participant’s updates, but the rest of the users do
not sec them.

A fourth approach is to use commit-serializability

- (CS) transactions. CS allows a transaction to split into

several distinct transactions as long as they have disjoint
write sets (ie., the set of objects the transaction has
updated) and the read set of each new transaction is disjoint
from the other new transactions being created in the split.
“These new transactions can commit or abort independently
or they may join with any other transaction in the system 1o
create another new transaction. All transactions that com-
mit are serializable, but they may be completely different
than the set of transactions that were initially created [12].
The idea is that transactions are created, split, merged, and
comminied as the user examines and updates the database.
CS mransactions can be used to solve problems with long
transactions.

. Lastly, database researchers are exploring another

—approach to solving the long transaction problem, called

sagas. A saga is a long transaction that can be broken up

_into a collection of sub-transactions that can tun at the

same time with other transactions. These sub-mransactions
are related to each other and all must commit for the saga
to commit. Sub-transactions are non-atomic which means
that database updates made by the sub-transaction can be
undone at a later time by a *‘compensating transaction”
that must be defined for each sub-transaction. The advan-
tage of sagas is that more concurrent’ access is possible
because sub-transactions can be completed and the
resources they control can be released [13].

Most people agreed that there is still much work 10 be
done in this area.

Another topic discussed in this session was the
requirement that a rule in the database invoke some acdon
when the predicate becomes true. For example, a manager

mxght want to be notified when the bug count in a particu- - .

lar part of the system had reached a certain threshold. This
capability is called an alerter in the database community
[14]. Few, if any, commercial DBMS's support alerters.




The 1989 Software CAD Databases Workshop 723

4. Alternative DBMS Architectures

The majority of this session was used to allow the
developers of various database systems to describe their
sysiems. The following systems were discussed:

‘Software BackPlane! (Atherton Technology) [15]
Cactis (University of Colorado at Boulder) (3]
EXODUS (University of Wisconsin) [16]
Gemstone (Servio-Logic) [17]
Iris (HP Laboratories) ; )

" Observer/Encore (Brown University) [18]
POSTGRES (University of California at Berkeley) (4]
A Yet to be Named Product (Ontologic) [19)

" Several themes emerged from these presentations. First, all
of the systems are object-oriented in the following senses:

1) they provide richer type systems than a conventional
relational DBMS, 2) they support some form of object
identity, and 3) they support inheritance. Some, but not all,
systems extend a set-oriented query language (e.g., SQL)
with user-defined procedures and methods and some store
methods and procedures in the database.

The second theme was the importance of support for
complex objects. ' Typically, this support includes some
mechanism to load an object composed of many objects
with different types that are highly interdependent (i.c.,
they contain many atributes with references to other
objects in the complex object) very quickly. Object refer-
ences arc represented by OBJID’s that are assigned by the
DBMS and never changed. The load process usually

tanslates the database representation of values to an

appropriate representation for the program. This transla-
tion is called swizzling. Most systems convert OBJID’s to
main memory pointers, called pointer swizzling, so that
subsequent references can be implemented very efficienty.
Main memory performance is critical for many of the

;pplications that these systems are addressing, including
DE's.

) A third theme that emerged was that any next genera-
uon DBMS must provide all functionality that is provided
by current commercial relational DBMS’s. This fact was
pparent both from the requirements list presented in figure
2 and the discussion during the workshop. Specifically, the
D? MS must support associative queries, multiple program-
Ming language interfaces, database procedures (ic., the
3bility to dynamically link application code into the DBMS
Process), and conventional transactions.

T*jﬁ discussion then turned to an object-oriented pro-
f‘_‘ommmg system with an integrated database that allows a
¥ ST""'{“'CT 1o use database functionality on any object.
l:::’“'lc idea is that some database functions (e.g., associ-

Gueries and atomic operations) should be available on

.~

Trademark of Atherton Technology.

Butter
Cache

Figure 3: Integrated programming environment architecture.

objects created by a program that are not persistent. In
addition, these functions should be applied uniformly to
across all objects (i.c., persistent and non-persistent).
Examples are queries that search for data in the database, in
a program cache that holds objects that have becen fetched
from the database, and non-persistent objects in the pro-
gram. Another example is that it should be possible to
define a rule on database and program objects.

. The software architecture that runs on the distributed
system shown in figure 3 was proposed by several people.
The object cache holds database and program objects.
Object references in the program access this cache directly.
Associative queries are handled by the distributed DBMS
code in the client machine. This code treats the object
cache as another local data manager similar to the DBMS
that runs on the server machine. While this architecture is
conceptually clean, many hard problems remain to be

-solved. For example, how does the system optimize a com-

plex query that joins database and program objects where
some of the database objects have been fetched into the
object cache and modified by the program. Several groups
in the dambase and programming language communites
are working on similar systems {18, 20-22].




724 o T o " "LA Rowe

At the end of the session two issues related to stan-
dards were raised. First, someone said that they wanted a
better object-oriented data model than the model provided
by C++. This issue was Taised because most attendees
recognized that C++ will be the most widely-used object-
‘oriented programming language model due to the popular-
ity of C. The problem with a C++ data ‘model is the

absence of a standard set abstraction, 2 rules system, and a _

set-oriented query language. Tim Andrews from Ontologic
identified the real problem when he noted that his company
had developed a better data model in their VBASE product
but that the marketplace was not interested in it.

-+ ‘The second issue raised was whether SQL was the
right query language. As with C++, SQL is clearly the
-~ dominant query language and it is likely to remain so for a
very long time. The problem with SQL is the difficulty of
extending it to support new features (c.g., transitive closure
queries and complex object support).

- 5. Workshop Conclusions

_The final session was used to produce a list of conclu-
sions with which the majority of anendees could agree.
The following conclusions were agreed upon.

1. Both within the database and software engineering
communities there are many inconsistent and confus-
ing terms. Everyone who attended agreed that the
meeting had been productive in that it exposed some

of this confusion and in some cases led to agreement .

on common terminology (e.g., participant transac-
tons).

2. The development of a SDE, viewed as a database

application, requires more programmer control than

- the business applications that currently make up the

majority of applications for a conventional database

system. Specifically, there is an urgent need for more

functionality (c.g., complex object support, versions,

database rules, alerters, transitive closure queries,

non-traditional transaction models, better integration
of database services and program environments, and
schema evolution support) while at the same time pro-
viding acceptable performance.

3. Next generation DBMS’s will be object-oriented and
they will have to provide a superset of the capabilities
found in current commercial relational DBMS's.

4. Version management is not well understood and there
is no evidence that database systems will provide the
required support for the sophisticated version systems
required by a SDE.

5. Database systems must provide better support for
schema evolution. At one point during the workshop
people discussed the idea of the SDE being able to run
consistently across major changes to the SDE schema

and still answer the kinds of complex queric,

-—- described above. This capability presents a major

challenge to database rescarchers that might oy be
achievable.

. & The majority of attendees were skeptical that ap

accepnblc, commercially supported DBMS with ay
the features required by a SDE will be forthcoming in
a reasonable timeframe. .

7. Interfacing existing tools to a SDE is a very hard

. problem and nobody has any good ideas about how 10
solve it Some people thought this will be a criticyl
requirement for future SDE’s.

& Lastly, many people agreed that there must be life
after C++ and SQL, but everyone reluctantly agreed
that the marketplace would continue to make them the
dominant languages.

Dnring.this session, the group also produced a list of topics

_that were not discussed during the workshop and came 10 a

conclusion as to whether this exclusion was good or bag.
This list incloded the following.

L. The concepr and semantics of objecr was not raised ar
any time during the workshop. Everyone unani-
mously agreed that this exclusion was good.

2 There was no discussion of security. Several people
noted that this topic is extremely important and that it
will have to be addressed eventually.

3. User-interfaces were not discussed. This exclusion
was a conscious decision by the group at the begin-
ning that was agreed upon so that we would not be
distracted from the topic of databases. There was
general agreement that this decision was good.

4. Finally, there was no specific discussion of whether a
SDE dambase must be an integrated database (ic.,
that all data must be stored in a single database that
might be distributed) or a federated database (i.c., data
is stored in different databases that may not suppor a
consistent data model). This topic has been important
in the business application community where it has
been discovered that a single integrated DBMS thai
supports all applications and hardware platforms is
not available. It remains to be scen whether the same
is true for SDE's.

Acknowledgements

I want to thank Dave Dewitt and Lee Osterweil who sup-
parted this workshop in many ways. Without their help, 1t
would never have happened. T also want to thank the ses-
sion note takers: Gail Kaiser, Dennis Heimbigner, and
Maria Penedo. I could not have written this repor: without
their input. All errors are my fault not theirs.




10.

11

The 1989 Software CAD Databases Workshop 725

References

L. A. Rowe and S. Wensel, editors, Proc. 1989 ACM
SIGMOD/SIGSOFT Workshop on Software CAD
Databases, Feb. 1989.

S. N. Khoshafian and G. P. Copeland, *‘Object
Identity™, Proc. 1986 OOPSLA Conf., Portland, OR,
Sep. 1986, 406-416.

S. E. Hudson and R. King, “Object-Oriented
Dartabase Support for Software Environments’,
Proc. 1987 ACM-SIGMOD Conf. on Management of
Dazta, San Francisco, CA, May 1987.

M. R. Stonebraker and L. A. Rowe, ““The Design of
POSTGRES’’, Proc. 1986 ACM-SIGMOD Conf. on
Management of Data, Washington, DC, June 1986.
B. Lindsay, J. McPherson and H. Pirahesh, *A Data
Management Extension Architecrure™, Proc. 1987
ACM-SIGMOD Conf. on Managemens of Data, San
Francisco, CA, May 1987.

S. Ceri and G. Pelagatti, Distributed Databases -
Principles and Systems, McGraw-Hill, New York,
1984.

J. E. B. Moss, *‘Nested Transactions and Reliable
Distributed Computing”, Proc. 2ad Symp. on
Reliability in Dist. Soft. and Database Sys.,
Pittsburgh, PA, July 1982. Available from IEEE
Computer Society Press.

E. Adams and et al, ‘‘Object Management in a
CASE Environment’’, Proc. 11th Im. Conf. on
Software Engineering, Pinsburgh, PA, May 1989.

J. Walpole and et al, ““A Unifying Model for
Consistent  Distributed  Software  Development
Environments’’, Software Eng. Notes 13, 5 (Nov.
1988).

G. E. Kaiser, ‘“Extended Transactioa Models for
Software Development Environments™, Technical
Report CUCS-404-88, Columbia Umiv. Dept. of
Comp. Sci,, 1988.

M. Dowson, Proc. 1989 ACM SIGMODISIGSOFT
Workshop on Software CAD Darabases, Computer
Science Division - EECS, U.C. Berkeley, Feb. 1989.

C. Pu, G. E. Kaiser and N. Hutchinson, ‘‘Spit-
Transactions for Open-Ended Actvities™, Proc. 14th
Int. Conf. on Very Large Data Bases, Los Angeles,
CA, Aug. 1988, 26-37.

H. Garcia-Molina and K. Salem, *“‘Sagas™, Proc.
1987 ACM-SIGMOD Conf. on Management of Data,
San Francisco, CA, May 1987."

14. O. P. Buneman and E. K. Clemons, *‘Efficienty

15.

16.

17.

18.

15.

20.

21.

22.

Monitoring Relational Databases’, ACM Trans.
Daztabase Systems, Sep. 1979, 368-382.

W. Paseman, Proc. 1989 ACM SIGMODISIGSOFT
Workshop on Software CAD Databases, Computer
Science Division - EECS, U.C. Berkeley, Feb. 1989.

M. Carey and et al, “The EXODUS Extensible
DBMS Project: An Overview’’, Computer Sciences
Technical Report #808, Univ. of Wisconsin, Nov.
1988.

G. Copeland and D. Maier, ‘‘Making Smalltalk a
Database System’’, Proc. 1984 ACM-SIGMOD Conf.
on Management of Data, June 1984.

A. H. Skarra, S. B. Zdonik and S. P. Reiss, “An
Object Server for an Object-Oriented Databasc
System’’, Proc. Int. Wikshp on Object-Oriented
Database Systems, Asilomar, CA, Sep. 1986.

T. Andrews, Proc. 1989 ACM SIGMODISIGSOFT
Workshop on Software CAD Databases, Computer
Science Division - EECS, U.C. Berkeley, Feb. 1989.

R. Balzer and etal, “Specification-Based
Computing Environments’, Proc. 8tk VLDB Corf.,
Sep. 1982, 273-279.

W. Kim ang et. al., “’Integratng an Object-Oriented
Programming System with a Darabase System’,
Proc. 1988 OOPSLA Conf., San Diego, CA, Sep.
1988, 142-152.

L. A. Rowe, *‘A Shared Object Hierarchy™, Proc.
Int. Wkshp on Object-Oriented Darabase Systems,
Asilomar, CA, Sep. 1986.




Life-cycle (Sub) Process Scenario

for 9th International Software Process Workshop (ISPW9)*

March 1994

Maria H. Penedo
TRW
One Space Park
Redondo Beach, CA 90278

Abstract This paper contains the ISPW9 scenario
or process example. It is a continuation of the In-
ternational Software Process Workshops’ tradition of
providing a process scenario as an example of life-cycle
sub-processes for specifications in different formalisms
and implementation and demonstration in different
systems. It was defined to support a demonstration
day at the International Software Process Workshop
(ISPW9).

1 Background

This scenario is a continuation of the International
Software Process Workshops’ tradition of providing
a process scenario as an example of life-cycle sub-
processes for specifications in different formalisms and
implementation and demonstration in different sys-
tems.

These examples or scenarios, together with specific
guidelines, were designed and planned with many ob-
jectives in mind, including:

1. to provide canonical examples as vehicles for
distinguishing the distinct process definition ap-
proaches. '

2. to provide samples of “real life” issues in order
to facilitate the explanation of demonstrations

*in Proceedings of ISPW9.

and to make those demonstrations applicable to
prospective users.

3. to bring about specific technical issues to be ad-
dressed by different process formalisms and sys-
tems and as a means to experiment with those
issues in the various approaches and systems.

The original example, from ISPWG6, appears in the
Proceedings of the 1st International Conference on the
Software Process, held in California, in October 1991
[IEEE Computer Society Press|. Extensions to this
example have been proposed in ISPW7 and ISPWS.

2 Introduction

This year’s scenario is a revision of the ISPW6 sce-
nario, to take away some of its rigidity, to make it
more realistic and tailorable, and to add items related
to human-computer interaction and computer medi-
ated human cooperation. This scenario is flexible, i.e.,
it provides a base scenario which includes named but
un-specified procedures and policies. Thus, demon-
strators can extend the scenario to demonstrate di-
verse policies and models, and the strengths of their
systems.

This scenario focusses on:

e Life-cycle aspect:
Change Process

Problem Reporting and




o Theme: Roles of human in the process and au-
tomation support for individual/team activities.

e Objective: Demonstrate process execution and
how a process-based SEE helps project users in
their roles (e.g., project manager, designers, de-
velopers, configuration managers) perform their
activities and cooperate with each other.

The base scenario appears below, followed by a
set of sub-scenarios with recommended themes to
be demonstrated together with the scenario. These
themes either refine the base scenario by including spe-
cific procedures, or list candidate functionalities to be
demonstrated.

At ISPW9, there will be a demonstration day pre-
ceding the workshop (open only to workshop atten-
dees). Demonstrators are requested to enrich the base
scenario with the sub-scenarios. It has been our expe-
rience that the demonstrations provide a good source
of ideas and concepts to be discussed throughout the
workshop.

3 Base Scenario for Demonstration:
Problem Reporting and Change
Process

o A software project is on-going, with “parts” of
the system already designed, codified, tested and
baselined (i.e., under configuration management
control).

e A problem is reported by a tester on the testing
of a piece of the system under development. The
project’s problem reporting and analysis proce-
dures are then followed and a person is assigned
the task of the analysis of the problem. (Note:
these procedures can be formal or informal, de-
pending on the type of project. Notification can
be effected by mail, by forms, by a tool. The
procedures may include rules or guidelines telling
who assigns people resources to study which prob-
lems and what kind of steps need to be followed.)

e A developer/analyst analyzes the problem and
proposes a solution. After the analysis (which
can be illustrated via automated process support
or assumed to have been done manually), the
developer identifies that the problem affects one
software module which has been coded, tested
and baselined, and possibly also affects some
documnentation (e.g., design and/or testing doc-
uments). (Note: the related documentation can

be identified explicitly with help from the system,
or implicitly via existing pre-defined rules in the
system).

e After some analysis, it is noted that the module
to be fixed is currently being (re-)used by two
separate users or teams (again how this is accom-
plished may vary, i.e., the system may flag this
issue or this fact may be found explicitly by in-
spection by a configuration manager or the de-
veloper). Those users are notified of the problem
and that the module will be changed.

e The change process starts according to pre-
established change procedures (which entail as-
signment of resources, code and/or documen-
tation modification, analysis/testing/review, ap-
proval/rejection and new baseline of the module
and associated documentation).

e The module is checked out of the baseline accord-
ing to the CM procedures for change but reuse of
the old version continues.

o The module is changed to fix the problem. (Op-
tionally, the fix could be done by two or more
separate developers and their cooperation may be
illustrated via process support).

e The module is tested (formally or informally).
Once the problem is fixed, procedures for ac-
ceptance/rejection are followed. Once the mod-
ule is accepted (i.e., the change does fix the
problem and it does not violate any of the re-
quirements), appropriate regression testing on the
modules/systems which reuse a prior version of
this module can be performed.

e Once all is done, the change process is finalized.

4 Sub-Scenarios.

Demonstrations should explicitly include as many
of the following sub scenarios as possible:

1. Policy Extension. Specify and demonstrate one
or more specific procedures/policies to comple-
ment the scenario (preferably performed with au-
tomated process support):

problem reporting and/or analysis

testing procedure/method

analysis of a problem using data in system

[ ]

configuration control: retrieval, storage
code fix




e problem approval/rejection

e resource allocation

2. User Role Support. Demonstrate im-

plicit /explicit support for project user roles (see
definition in note), i.e., demonstrate: i) (multiple)
user to (multiple) role assignment, either static or
dynamic; ii) the impact of actions of one role upon
another (i.e., automated cooperation among roles
based on process definition); and iii) how roles
affect the interaction styles and other aspects of
the process.

Note: Definition of Life-Cycle User Role (adapted
from Webster): An expected behavior pattern as-
sociated with one or more people when executing
life-cycle activities (e.g., project manager, con-
figuration manager, developer, system analyst).
One person can play multiple roles in a project.
For example, when someone is writing code, s/he
is playing the role of developer; when s/he is do-
ing configuration management, s/he is playing the
role of configuration manager.

. Individual Support. Demonstrate how indi-

viduals are guided about what task to do next,
how users are made aware of the state of the
process, or how the system performs actions as
a result of the users’ actions. Demonstrations
should clearly illustrate how users are aware of
the process, how the environment and individuals
interact, and what variables control the different
modes of interaction.

4. People Coordination. Demonstrate coordi-

nation of multiple people, including any support
for resolution and tolerance of inconsistency.
In particular, demonstrations can illustrate which
aspects of these policies, if any, are hard-wired
into their systems, and which can be altered by
the particular model, and when the policy selec-
tions are made.

5. Configuration Management. Demonstrate
how software and/or documents are controlled for
the purpose of change, and how individuals using
a module in their development are made aware of
problems and/or changes to that module.

6. Project/Central vs Individual Coordina-
tion. Demonstrate how the executing process
supports both individual and project activities,
and how the interactions of those activities are
supported/mediated by the system.

7. Process Changes while in execution. Dy-
namically demonstrate changing any of the pro-
cess definitions supporting the scenario and
points 1-5 above, and the effects of those changes.

5 Acknowledgement.

Many thanks to the Program Committee, A.
Finkelstein, K. Futatsugi, C. Ghezzi, G. Kaiser, K.
Narawanaswamy, D. Perry, for providing ideas and re-
viewing earlier versions of this scenario. This work was
supported by the Advanced Research Projects Agency.




ISPW9 Process Demonstrations - Summary”*

Maria H. Penedo
TRW

One Space Park
Redondo Beach, CA 90278

Abstract

A process demonstration day was held at the 9th
International Software Process Workshop (ISPW3),
Washington, DC, 1994. The objective of the demon-

stration day was two-fold:

o {0 evaluate how different systems and environ-
ments support/gquide users in the fulfiliment of
their project activities, and

o to bring forth technical issues identified by the dif-
ferent implementors in the context of their for-
malisms and systems.

A scenario ezample was defined [1] to represent is-
sues in the life of real projects and to serve as a com-
mon example for demonstration purposes. This docu-
ment gives some background to the scenario, briefly
describes the systems demonsiraled, and provides a
commentary about the demonstrations. Architecture
depictions of those systems appear in the Appendiz.

1 Scenario Background

In the last few years, the process community has
defined a “process scenario” which describes a sub-set
of the software development process activities, to serve
as a canonical example for the community. It was done
in conjunction with the International Software Process
Workshops (ISPW).

In the first years, the scenario was used to under-
stand and compare process modeling notations. In the
last two years, this scenario is'being demonstrated by
existing research and commercial tools and PSEEs; it

*in Proceedings of ISPW9, Arlie, VA, Oct 94.

has served to highlight differences among existing ap-
proaches and to identify strengths and weaknesses of
such approaches. The first example was defined for the
6th International Software Process Workshop (ISPW)
and it appears in [2].

The scenario identified for ISPW9 [1] is a revision
of the first scenario to make it more flexible, realistic
and tailorable. It also adds items related to human-
computer interaction and computer mediated human
cooperation, which were the themes of the workshop.
It consists of a base scenario dealing with Problem
Reporting and Change Process and a set of optional
sub-scenarios to highlight, among other things: sup-
port for user roles, people coordination, tailorability
to specific policies, individual vs project coordination,
and process changes. ‘

2 Systems Demonstrated

Eight systems were accepted for demonstration:
Hakoniwa, from Osaka University (Japan); LEU, from
Lion Gesellschaft fur Systementwicklung mbH (Ger-
many); MVP-S, from University of Kaiserslautern
(Germany); Oikos, from Pisa University (Italy);
Oz, from Columbia University (USA); Synervision,
from Hewlet-Packard (USA); Regatta, from Fujitsu;
SPADE, from P. Milano. The latter two systems could
not be demonstrated. The systems were demonstrated
by H. Iida, V. Gruhn and S. Wolf, C. M. Lott, C. Mon-
tangero, I. Ben-Shaul, and John Diamant respectively.

The environments demonstrated are briefly de-
scribed below. Table 1 shows, for each system, its pro-
cess formalism, user interaction paradigm, general ar-
chitectural communication model, and database used.
Architecture depictions of those systems appear in the
Appendix; they were provided by the demonstrators.




Table 1. Summary of Systems Demonstrated

System Process Formalism User Interaction Comm. Model Database
Hakoniwa | - concurrent, sequential - graph-based animation multi-client File System (FS)
task language - color-based single-server
- template-based - menu-based activity (TCP/IP)
navigation
Leu - integrated models: Petri- | - agenda-oriented client-server FS + DB
net, ER, Hierarchical | - net animation (TCP/IP)
MVP-5 - declarative language - role-based views of multi-client FS
instantiated via plan activities single-server
- entry/exit criteria - status of activities (TCP/IP)
Oikos - logic concurrent language | - role-pad client server FS + DB
- object-orientation in-house BMS
Oz - rules - menu oriented multi-client homogeneous
- envelopes - activity based multi-server multi-db
- animation of task activation | (with TCP/IP)
Synervision | - shell-like language - agenda (task) based peer-peer FS
with process functions (user and procedure) BMS w/ locks and
notification

2.1 HAKONIWA: A Process Monitor
and Navigation System

The Hakoniwa system [3] is a project monitoring
and navigation system which supports -cooperative
software development performed by a group of devel-
opers.

The system is based on a concurrent process model,
which is composed of a set of tasks associated with
communication primitives among the tasks. A task is
defined as a sequence of primitive activities.

The Hakoniwa system is composed of two main
components: i) a process monitor (Hakoniwa server);
and ii) a process navigation system (task driver and
organizer). Based on the assignment of tasks to each
developer (which may be done by a project manager),
task organizers for each developer and task drivers for
each task are generated.

Major features of the Hakoniwa system are as fol-
lows:

e Activity navigation. A task organizer controls
the task drivers which are associated with a de-
veloper. A task driver supports developers by
providing menu selections for the next activities.
These menus are automatically generated from
the definition of the activity sequence.

If an activity in the sequence is one accomplished
by a tool invocation, the task driver automatically
activates the tool.

e Progress monitoring. Each task driver reports
to the Hakoniwa server log information of the
task progress collected from the menu selection
history. Thus, the project manager can capture
the current status of whole project through the
Hakoniwa server. The system displays the sta-
tus of each task, and it also shows the history of
activities for each developer.

e Communication support. All communication
among tasks pass through the Hakoniwa server.
Simple communication primitives such as task ini-
tiation request and task termination notification
are automatically executed without any action of
the developers.

At the start point of the project, the manager as-
signs some of project members to the initial tasks.
Initial assignment is documented as a Hakoniwa task
assignment file. Once the project starts, initial tasks
are executed by members, and other succeeding tasks
are predefined but not activated. They are instanti-
ated/executed by assigning their enactor (member) on
demand.
The focus of the demonstration included:

e global vs individual support;
o visualization of process execution;

e color based on the state of tasks;




e automatic generation of menus (from activity def-
inition) guiding developer through activities;

e log of information collected (in server) from menu
selections

o task assignment to enactor either pre-defined or
assigned during execution.

e communication between tasks via messages.

2.2 LION _Engineering Environment

(LEU)

The LION Engineering Environment (LEU) [4]
is a workflow management environment, which sup-
ports: data modeling (based on extended en-
tity /relationship), process modeling (based on FUN-
SOFT nets) and organization modeling (based on or-
ganization charts), simulation, statistical analysis, and
process enaction.

The Leu approach to software process modeling
considers data models (describing object types and
their relations), activity models (describing the activ-
ities to be carried out in a software process), and or-
ganization models (describing involved organizational
entities and their roles) as separate, but equally im-
portant, facets of software processes.

Besides the tools to define the above mentioned
models, specific features of Leu are demonstrated;
for example, the generation of a database schema
for a software project and the generation of stan-
dard dialogs used to insert or retrieve software arti-
facts to/from the project’s database. Furthermore,
Leu tools are demonstrated to model dialogs used by
the software engineers to describe the states of tasks
or to plan future activities.

The execution of software processes is based on the
execution of the models mentioned above. The only
interface between Leu and a software engineer is the
“agenda”. The agenda contains at any point in time
all activities in all processes the software engineer can
participate in. The calculation of an engineer’s agenda
is based on the engineer’s access rights/roles and the
states of currently executed processes. If an activity
is started, the dialog, external tool, database query
or batch function associated with the activity is ex-
ecuted. If an activity was completed, the agendas
of all software engineers currently logged in are re-
calculated and adjusted to the changed process state.

To enable software engineers to overview a project’s
state, a process monitor provides information about all
currently executed activities or the fulfilled and miss-
ing pre-conditions of activities. Besides monitoring

‘currently running processes, simulation and analysis

tools are used to analyze the future behavior of a pro-
cess. For instance, bottlenecks and critical paths can
be identified, potential process states can be simulated
and the influence of resource changes on a project’s
execution plan can be tested.

LEU is a commercial product, a commercial reim-
plementation and enhancement of the FUNSOFT net
approach. The effort to build such system has been
100 person/year since 1991. It is currently applied to
software and other business processes, including hous-
ing building and administration. Leu is running in a
client-server environment. The server needs to be a
UNIX machine executing the software process models
and controlling the database access. The agendas and
dialogs are represented on the client which might be a
unix-machine or even a PC. If available on the client’s
site, parts of an activity initiated through the agenda
might be executed on the client too.

The focus of the demonstration included:

e Modeling different aspects of the process, i.e.,
data model, organization model and process
model, and the integration of those aspects.

¢ Generation of standard dialogues (i.e., user inter-
faces out of object types) and their binding to the
process.

o Analysis of the process, e.g., critical path analy-
sis.

2.3 MVP-S: Support for Measurement-
Based Project Guidance

The Multi-View Process System (MVP-S) [5] pro-
vides role-specific guidance to software developers dur-
ing their projects based on explicit project plans, role
definitions, quality models, and collected measure-
ment data.

Major features of the system include:

o Process engine. This system accepts a textual
MVP-L project plan and all related models, cre-
ates an internal representation of the plan, han-
dles requests to query and manipulate the cur-
rent project state, and maintains the project state
across shutdowns of the host computer. It uses
the information channel provided by the user in-
terface to communicate with developers.

e User interface. People who play technical roles
see a view of the project based on a “role-specific
work context”, which is the interface between




the developer and the set of activities (processes)
which involve that developer. Multiple work
context windows let developers view information
about all of their activities. An activity-specific
work context offers detailed guidance about each
activity using quantitative quality models.

o Interaction model. Activities are coordinated via
status values. The status values of activities
shown in the role-specific work context window
take on the values: i) disabled, i.e., can’t be per-
formed because entry criteria are false; ii) en-
abled, i.e., can be performed since entry criteria
are true but no one is executing it; or iii) active,
i.e., being performed. Upon receiving a request to
start or complete an activity, the process engine
checks the entry and exit criteria specified for the
process and informs the requestor whether the re-
quest conforms to the project plan. Also, people
interpret scripts.

e Use of empirical data. The tasks of collecting
data are split between the user interface and the
process engine. Tools are invoked by the user in-
terface because the process engine does not nec-
essarily have access to the work products on the
user’s machine. The process engine requests data
directly from people by sending electronic mail.
Empirical data may be used in the criteria to pro-
vide guidance by comparing actual values with
target values. This use of measurement data goes
beyond the approach of just signaling that a de-
viation from the project plan has been detected.

Measurement was integrated into the scenario to
demonstrate the system’s capabilities for guiding peo-
ple according to role definitions and measurement
data. For example, when completing a process step,
the system will recognize a trigger condition, call a
measurement tool to assess a product (automatic data
collection), and request from the user the effort spent
on the process (manual data collection). Further enac-
tion of the project plan will be guided according to the
resulting data. This can be used to coordinate steps
within a role (guidance for a single person, or for all
the people who play that role), as well as to coordinate
steps between different roles (again, either an individ-
ual or multiple persons). This coordination helps peo-
ple who are assigned tasks know what is expected of
them, and assists people who play observational roles
understand the current status of the project. Succes-
sive changes in the project state are communicated to
all individuals who play roles within that project.

The focus of the demonstration included:

e explicit representation of processes and measure-
ment;

¢ rolé-based views of activities in different states;
o collection of data automatically or user-directed;

e use of data for guidance and quality assurance.
2.4 OIKOS

The Oikos system [6] is based on a few principles:

o An enactable software process model, which con-
sists of a hierarchy of interacting reactive systems
including human actors. In fact, actors’ roles are
leaves in the hierarchy.

o The systems in a model are called “entities” and
belong to different classes; each class embodies
an important and well identified modeling con-
cept, e.g., operating environment, managing site,
actor’s role.

e Service customization is an essential part of the
model; thus, customizable pre-defined services
provide the basic functionalities that support pro-
cess enactment by accessing the allocated re-
sources.

o An enactable model is developed by step-wise re-
finements. That means that several partial views
of the process at various levels of abstraction can
be extracted from the refinement structure.

Two languages are used in Oikos: a specification
language, Limbo, and an enactment language, Paté,
which is in fact an executable sub-language of Limbo.
Limbo and Paté are concurrent logic languages. Their
basic features are: a) entities are organized in a tree,
reflecting the final structure of the enactable model; b)
agents are defined as sets of nondeterministic reaction
rules, of the kind condition-computation-action; rules
in a set can be partially serialized by path-expressions;
and c) agents in an entity evaluate concurrently their
rules, according to the blackboard model, i.e. they
share a common associative memory.

Expo is the Oikos run-time support. The main
goals of Expo are to provide distributed execution
of Paté systems, integration of off-the-shelf tools and
non Paté systems, and multiple human interaction
with Paté systems. A compiler translates a Paté pro-
gram into an intermediate code, which is interpreted
by a collection of predefined BIMprolog processes.
The user interface is based on OSF/Motif. Interpro-
cess communication is achieved through Unix sockets.




Persistency is introduced by the MCC logical DBMS
Salad.

For the demonstration, the scenario was extended
with the PSS05 Standard of the European Space
Agency; i.e., a three-stage PSS05 procedure for local
change. The following suggested sub-scenarios were
also included:

o Specific procedures/policies: PSS05, configura-
tion control and versioning capabilities.

e User role support. Roles are among the basic
modeling concepts of Oikos, which allows one to
express coordination of the roles in the process
with respect to the available resources. Static as-
signment of a single (Unix) user to multiple roles
is supported.

¢ Individual Support is provided via “RolePads”,
which guide users who play the role along the ap-
propriate behavioral pattern. Thus, at any given
moment it shows the available documents and the
actions that the user can perform on them, i.e.
which tools can be invoked on which documents
and which coordination actions are available.

The focus of the demonstration included:
¢ interactive reactive system
¢ user guidance via “rolepad” user interaction

e enactment and simulation of concurrent execut-
ing roles

o object orientation via icons representing object
and menus representing actions

¢ addition of PSS05 procedure.

2.5 O0z: A Decentralized Process Cen-
tered Environment

Oz (7] is a Process Centered Environment that sup-
ports — in addition to modeling and enactment of
a (single- and multi-user) project-specific process —
modeling and enactment of multiple heterogeneous,
autonomous, and possibly physically dispersed, pro-
cesses.

This research project focuses on two main aspects:

o Process interoperability, i.e., to investigate the ex-
tension of the concepts of modeling and enact-
ment to assist teams (or individuals), each with
its own process, to define and execute collabo-
rative activities while still retaining the desired
privacy of each team’s process; and

o Process Interconnectivity, i.e., to investigate the
architectural infrastructure that is required to
support process interoperability.

Oz is the successor of the Marvel project. As such,
it employs similar formalisms and mechanisms sup-
porting a single process. Specifically, it uses object-
oriented data modeling, rule-based process model-
ing, and a client-server architecture with a reactive
server that manages the process, object base and
intra-process coordination of an instantiated environ-
ment. The client provides a graphical user-interface
for browsing and querying the objectbase and the
process definition and a mechanism for executing en-
veloped activities.

Process interoperability in Oz is provided by the
Treaty formalism for modeling collaboration among
processes which are by default private, and the Sum-
mit mechanism for enacting the defined Treaties. The
basic idea behind the Treaty is to enable the dynamic
definition (and retraction) of shared sub-processes as
extensions to the (possibly pre-existing) private pro-
cesses. In addition, the Treaty mechanism requires
the involved parties to actively participate and agree
on the Treaty’s contents. The gist of the Summit is
to enable execution of Treaty sub-processes but retain
the locality of non-shared processes.

Process interconnectivity is supported in Oz by
a multi-server architecture, where each server cor-
responds to a (software) process, and by a semi-
replicated connection database that is itself main-
tained and manipulated by a (configuration) pro-
cess. The main emphasis here is on the “shared-
nothing” property that enables independent and self-
contained operation of the possibly geographically dis-
persed groups while still supporting maximum process
interconnectivity on demand.

The demonstration had as objective to show how
the process formalism and its underlying execution en-
gine can be used to assist (teams of) users in perform-
ing their tasks, and how human-oriented activities and
tools are integrated into the process. It expanded the
base scenario to show key features of Oz:

o Several interacting processes (e.g., one for the
testing group and two separate development pro-
cesses). The demonstration shows how potential
interactions can be added (removed) on the fly,
and how entire (sub)-environments can be added
to and removed from a global environment using
the registration process. (e.g., process changes
while in execution)

¢ Disjoint and asynchronous individual work in




the local processes versus joint and synchronous
project work.

e Process support for modeling and enacting user-
delegation, with emphasis on dynamic user bind-
ing (which may or may not be tied to the notion
of user roles).

e Process support for modeling, enacting, and inte-
grating multi-user tools, including both in-house
and off-the-shelf tools. Also shows integration
with a multi-user collaboration tool and a con-
figuration management tool.

e Automatic enactment of the process and use of
the project database to carry out some process
steps (e.g., approval/rejection)

The focus of the demonstration included:

e support for multiple cooperating processes (max-
imizing autonomy), showing interoperability, het-
erogeneity and decentralization;

e support for multiple and cooperating users
(CSCW) via: delegation, and synchronization of
multi-user tools including “white board” and “au-
dio/editing”.

2.6 SynerVision

SynerVision [8] is a commercial process enactment
tool. The enactment model is defined in SynerVision
and used by SynerVision. It has the following charac-
teristics:

e The representation model is a hierarchy of tasks
(a work breakdown structure) having attributes
and whose visibility is shared by a work group.
All users’ tasks (not just ones related to a specific
process instance or class) are represented.

e Humans in the work group apply filters to sort
and filter the tasks in a way that helps them focus
on tasks of concern.

o Attributes of the tasks are used for the following
purposes: representing task state, relationships,
and constraints, associating automations with the
task, and providing task guidance. User defined
attributes may be added to the schema to repre-
sent any of the above or additional information.

o Attributes provided by and used by the base
tool include: automatic actions which are invoked
upon certain state transitions or which determine

whether certain transitions are allowed; manual
actions which are helpful in completing the task
but are invoked at the request of the user only;
dependencies between tasks; status of the task
(completed, abandoned, in progress, new or on-
going); owner of the task; whether the task is
currently being executed; notes for both process
guidance and to record information about the
task; and others.

e Humans and automated agents are modeled as
owners of tasks. Tools which are not agents to
which tasks are assigned, but merely contribute
to the implementation of some actions attached
to tasks are not modeled per se — they are simply
invoked within the defined action attached to the
task, either via the SoftBench Broadcast Message
Server {(BMS) or via Unix commands.

The demonstration included the environment
ChangeVision. ChangeVision is an environment built
on top of SynerVision which provides a change re-
quest process (process templates and tools which in-
teract with the process defined by the templates).
Each change request in the system is an instance of
the change request process and has the standard ac-
tions, subtasks, dependencies, etc, associated with it.
ChangeVision integrates a configuration management,
version control system and a defect tracking system,
together with SynerVision; it also includes some met-
rics utilities. The tools provided/integrated are those
that are useful to the change request process.

The focus of the demonstration included:

e automation of lots of mundane tasks;

¢ showing the intermixing of process and user gen-
erated tasks;

e people coordination via delegation and dependen-
cies between users’ tasks;

o visibility of all tasks by everyone
o filtering capability associated with tasks

e configuration management, on work done by user
in process.

2.7 SPADE (not demonstrated)

The SPADE [9] project goal is to provide a software
engineering environment to support Software Process




Analysis, Design, and Enactment. The project is cur-
rently being carried out at CEFRIEL and Politec-
nico di Milano. The environment is based on a pro-
cess modeling language, called SLANG (SPADE Lan-
guage), which is a high-level Petri net based formal-
ism. SLANG offers features for process modeling, en-
actment, and evolution. In addition, it describes in-
teraction with external tools and humans in a uniform
manner. The main features of the SLANG modeling
facilities can be summarized as follows:

o Process models can be statically structured in a
modular way using the activity construct. Activities
(i.e., process fragments) can be dynamically instanti-
ated.

o Activities can be manipulated as data by other
activities; i.e., SLANG supports computational reflec-
tion.

o Process artifacts, including process models, are
modeled as tokens of a Petri net and behave as in-
stances of abstract data types (i.e., in an object-
oriented manner).

SPADE-1 is the first implementation of the SPADE
environment; it supports the enactment of SLANG
process models. Moreover, it provides the basic
mechanisms for process model evolution. Thanks to
SLANG reflective features, a SLANG process model
may include a metaprocess to change process defini-
tion and/or state during process model enactment.
SPADE-1 architecture is based on the principle of
separation of concerns between process model enact-
ment and user interaction. This means that the se-
mantics of the process modeling language does not
preclude any user interaction paradigm, achieving in-
dependence of user interaction paradigm and process
modeling paradigm.

The implementation of the SPADE-1 repository is
based on the object-oriented database management
system O2. The process model and the process data
are both stored in the repository. Software artifacts
manipulated by the process model (tokens) correspond
to O2 objects.

2.8 Regatta Technology Tool (not demon-
strated)

Regatta Technology is a commercial visual business
process modeling and enactment tool. Wide flexibility
is achieved by allowing end users to design and actively
modify their own process plans through an easy-to-use
Petri-net based graphical representation on Motif, and
MS windows. Cross platform API extends support to
custom applications.

The essential unique feature of the Regatta Tech-
nology is: firstly, that it is designed for end-users
to create and modify process descriptions through an
easy to use graphical description; and secondly, that
it allows descriptions of the process to be modified at
any time, even while the process is being enacted.

3 Commentary

The demonstration day was a great success at
encouraging in-depth discussions about interaction
paradigms and architectures of PSEEs; those discus-
sions were significantly strengthened by the concrete
views of the user interfaces and interactions of the
demonstrated systems. Many feel that interspersing
demonstrations with the workshop sessions will enrich
the discussions and provide more concrete data for
discussions.

Since the audience consisted of mostly PSEE
builders, there was wide interest in understanding the
architectures of such systems (not really obvious dur-
ing the demonstrations). It is felt that a lot more dis-
cussion and understanding is needed about how those
systems are constructed, how the architecture of sys-
tems support the specific process modeling and en-
actment techniques, and what are the relationships
among architectures, run-time support for process en-
actment, user interaction paradigms, and the various
characteristics demonstrated. At the suggestion of the
attendees, we collected architecture depictions of the
various systems and included them in the appendix of
this document.

It is worth pointing out that two commercial
and four research systems were demonstrated. The
amount of effort for putting together the demonstra-
tion varied among the various systems. The demon-
strations covered the basic scenario and many dealt
with aspects of the sub-scenarios. A few comments
about similar concepts among the demonstrated sys-
tems are: a) individual support is necessary beyond
global, central project support; b) agendas or role-
pads for individual support are being used and are
recommended; ¢) the formalisms did not seem to have
an impact on the choice of user interaction paradigms;
d) the “Process Engine” appears as a key component
in those systems’ architectures; e) the interoperabil-
ity mechanism varies but it seems that message-based
systems are gaining strength; f) triggering mechanisms
are in wide use for communication among processes, .
and among processes and data.




. 4 Acknowledgement.

The coordination of this activity was supported
by the Advanced Research Projects Agency, under
contract N00039-95-C-0017, issued by the Space and
Naval Warfare Systems Command.

5 Bibliography

1. Penedo, Maria H., “Life-cycle (Sub) Process
Scenario for 9th International Software Process
Workshop (ISPW9)”, Proceedings of the 9th In-
ternational Software Process Workshop, Arlie,
VA, October 1994.

2. Kellner, M., P. Feiler, A. Finkelstein, T.
Katayama, L. Osterweil, M. Penedo, D. Rom-
bach, “ISPW-6 Software Process Example”, Pro-
ceedings of the 1st International Conference on
the Software Process, California, October 1991.

3. Hakoniwa System:

e Iida, H., Mimura, K., Inoue, K. and Torii,
K., “Hakoniwa: monitor and navigation system
for cooperative development based on activity

. sequence model,” in Proceedings of 2nd ICSP,
pp.64-74, February 1993.

4. LEU System:

e G. Dinkhoff, V. Gruhn, A. Saalmann and M.
Zielonka, Business Process Modeling in the Work-
flow Management Environment LEU, Proceed-
ings of the 13th International Conference on the
Entity-Relationship Approach, Manchester, UK,
December, 1994.

e V. Gruhn, “Communication Support in the
Workflow Management Environment LEU”, Con-
nectivity '94 - Workflow Management - Chal-
lenges, Paradigms end Products, Linz, Austria,
R. Oldenbourg, Vienna, Munich, G. Chroust, A.
Benczur (eds.), pages 187-200, October, 1994.

5. MVP-S System:

o Christopher M. Lott, “Measurement support
in software engineering environments,” Interna-
tional Journal of Software Engineering & Knowl-
edge Engineering, 4(3), September 1994.
e Christopher M. Lott, Barbara Hoisl and H. Di-
eter Rombach, “The use of roles and measure-
ment to enact project plansin MVP-S” | to appear
. in Proceedings of the fth European Workshop on
Software Process Technology, April 1995.

6. OIKOS System:

o C. Montangero and V. Ambriola, “Oikos: Con-
structing Process-centred SDEs”, in A. Finkel-
stein, J. Kramer and B. Nuseibeh (eds), “Soft-
ware Process Modelling and Technology”, Re-
search Study Press, Taunton, 1994, 131-151.

e V. Ambriola, G.A.Cignoni and C. Montangero,
“The Oikos Services for Object Management in
the Software Process”, in B.C. Warboys (ed) Soft-
ware Process Technology, EWSPT’94, Feb 94,
LNCS 772, 2-14.

. OZ System:

o Isracl Z. Ben-Shaul and Gail E. Kaiser, "A
Paradigm for Decentralized Process Modeling and
its Realization in the Oz Environment”, Proceed-
ings of 16th International Conference on Software
Engineering, IEEE Computer Society Press, pp.
179-188, Sorrento, Italy, May 1994.

o Israel Z. Ben-Shaul and Gail E. Kaiser, ”A
Configuration Process for a Distributed Software
Development Environment”, 2nd International
Workshop on Configurable Distributed Systems,
pp. 123-134, Pittsburgh PA, March 1994.

. Synervision:

e B. Fromme and J. Walker, “An Open Architec-
ture for Tool and Process Integration,” Proceed-
ings of the Software Engineering Environments
Conference, pp. 50-62, IEEE Computer Society
Press, July 7-9, 1993.

e J. Diamant, “Human Interaction Support in HP
SynerVision for SoftBench” Proceedings of the 9th
International Software Process Workshop, IEEE
Computer Society Press, Arlie, October 1994.

. Spade:

e Sergio Bandinelli, Alfonso Fuggetta, and Carlo
Ghezzi, “Process Model Evolution in the SPADE
Environment”, IEEE Transactions on Software
Engineering, 19(12):1128~1144, December 1993.

e Sergio Bandinelli,” Alfonso Fuggetta, Carlo
Ghezzi, and Luigi Lavazza, “SPADE: An Envi-
ronment for Software Process Analysis, Design
and Enactment”, in Anthony Finkelstein, Jeff
Kramer, and Bashar Nuseibeh, editors, Software
Process Modelling and Technology, pages 223-
247. Research Studies Press Limited, 1994.




Appendix - Architectures of the Demonstrated Systems.

NS IESARINESER AN NGAAR NSRS NG RN ENGEEERONNOIREUNENINNESREEONARNNARARAND e
- -

Project—-A
design—1: de
coding-1: foo

+ coding—2: bar

Task Declaration &
Assignment File

Process Description

TaskTemplate

........

akoniwa
erver/Monito

Task Driver

Task Organizer

Navigator
communication/tool activation)

A View of the Hakoniwa System Architecture




Leu control

! Instantiation ;
Agenda '
: fill entry (> :
e r ry () Agenda Agenda :
: r selected entry (<) controller :
Process engine Agenda /
controlier entry for agenda (->) :
: start remove entry (=)
activity selected entry (<)
: Activity :
. handler 5

Process model Process
database database

A View of the Leu System Architecture

10




User interface ||«

i W0 gm deip qut

Rcise_Puaa

network

= 10
aion B s hap qut
Tociste Pk active
ek Code awak sbiad

MVP-S
Process engine

op. sys.

<

Project

DB

=1 [=]0
s ffo paa daip qut
[ 4 e Faults g
weak Coxle_Rawerk onablad
op. sys.
dev.
tool

A View of the MVP-S System Architecture




Process Program

Interfaces

b

v
’
.

EXPQO Monitor

I/ ;. -
. : '/'_ “-Name
o4 Server
EXPO Communication Support
Activator
Paté Libraries PRS Product Repository Service

TRS Tool Repository Service .
WS Workspace Service
AIS Actor Interaction Service

EXPO Components

A View of the Oikos System Architecture

12




Wide Area Network

Connection
Server

Inactive

Instantiated
Environment

[
|
|
|
I
I
|
I
|
|
I
I
|
|
I
l
I
|
|
|
|
|
I
I
|
|
!
1

Connection
Server

UO!‘BQ!UHIHUIOD 'u:)lqu.l!AuQ—.lJ]“]

remote

Transaction
Server

remote

v

Instantiated
Environment

J 1N

Intra-Environment Communication

Connection
Server

remote

remote
Process
Server

uonENUNUIIoY) judu! UOIAUI—INU]

Instantiated
Environment

VR

Intra-Environment Communication

\

client client

client

A View of the Oz System Architecture

13

client




Task
Repository
(instances)

Process
Templates

CM
Repository

Filesystem

CR
Repository

%\Sing]e User View of ChangeVision
%___ Syner Vision

SoftBench
Code
Construction

CASE Tools
%< Code/Test

Metrics

Change Reqﬁest
' Tracking System
(such as DDT5s)

A View of the Synervision System Architecture

14

(SINY) JOAIIS IBBSSIA] )SBIpROIYg




SBUS: A Framework for

Software Bus Comparison

*

Maria H. Penedo
Christine Shu
TRW
One Space Park
Redondo Beach, CA 90278

Abstract

This paper outlines an inttial framework, denoted
SBUS, for the characterization and comparison of
systems or mechanisms which are identified as soft-
ware buses. “Software Buses” play an important role
in supporting component interoperability in Software
Engineering Environment (SEE) architectures. The
SBUS framework consists of a set of attributes which
together characterize such systems. An initial survey
based on this framework appears in [1]. The systems
surveyed were: HP’s BMS, Forest, ESF K/1’s Soft-
ware Bus, ESF Kernel/2r’s Muse, Polylith, Arcadia’s
Q, Weaves. This paper outlines the SBUS attribules
and characteristics and illustrates its use by charac-
terizing aspects of the Arcadia’s Q) system. Both the
framework and the survey represent work in progress.

1 Background of Work

Over the last decade, part of the software engi-
neering community has been shifting its attention to-
wards software engineering environment (SEE) and
process issues, finding that tools and languages are
best defined and implemented within the context of
environments in which they are used and the pro-
cesses they support. Key requirements for next gener-
ation SEEs which have direct impact on their architec-
ture, 1.e, on the way they are built, are: component-
based and interoperability technology, rapid construc-

*submitted to ICSE-17 Workshop on Architectures for Soft-
ware Systems.

tion and adaptation technology, extensibility, and sup-
port for (life-cycle) process automation.

Our research activities have aimed at providing so-
lutions in support of those requirements. A major ob-
Jective of our approach is to create, assess and enhance
the technology necessary to rapidly build and sustain
pro-active, component-based and process-driven SEFEs
(PSEE). Towards this goal we are defining and validat-
ing a Domain Specific Software Architecture (DSSA)
approach to PSEEs. We have been exploring and pro-
totyping architectural issues from the perspectives of
interfaces and integration [PS91, PSSS89] and defin-
ing models to serve as functional reference frameworks
or architectures [NIS93, KPS93, Pen93] for PSEEs.

A recent workshop on Process-sensitive Soft-
ware Engineering Environment Architecture! indi-
cated that further technology in support of componen-
tization of PSEE components and process components
is needed. It assessed the state of the art, it brought up
important architectural issues and made recommenda-
tions for future work [PR93]. At that workshop, con-
sensus was achieved on the following definition: “A
software architecture should be viewed and described
from different perspectives and it should identify:

(a) ils components,

(b) their static inter-relationships
(c) their dynamic interactions
(d) properties and characteristics

(e) constraints on the items above.”

1This workshop was coordinated by us in cooperation with
the Rocky Mountain Institute of Software Engineering.




SEE architectures are very important in the realm
of software architecture studies. SEEs are systems
in their own right, thus representing a specific sys-
tem/software domain, and SEEs may include compo-
nents in support of software architecture design and
implementation.

2 SBUS Introduction

The term “software bus” has been frequently used
in recent years for describing a class of architectures
that share a common component (denoted software
bus) which implements an abstract communications
model for the interoperation of components in a dis-
tributed environment. There are some essential char-
acteristics and behavior of these systems that delin-
eate them from other architectural approaches. The
PSEEA workshop [PR93], for example, used three
architectural approaches for characterizing existing
PSEEs with respect to their component communica-
tion: i) logically centralized database, ii) direct agent
to agent (connections), and iii) software bus.

Software buses are currently being used as key
mechanisms for SEE tool/component communication
and interoperation. We strongly believe that a better
understanding of interoperability mechanisms, char-
acterizing the circumstances under which one is pre-
ferred to the other is necessary to support the rapid
construction of SEEs. Towards this goal, we have
identified a reference framework, denoted SBUS (Soft-
ware Bus), in order to better understand and compare
software bus components. We note that a software bus
system can be composed of one or more software com-
ponents (which themselves may communicate via their
own bus mechanism).

SBUS consists of a set of attributes/characteristics
which are applicable towards describing software
buses. This set of attributes is evolving as our inves-
tigations proceed and our knowledge increases. We
performed a survey of systems which have been char-
acterized as software buses and play an important role
in existing Software Engineering Environment (SEE)
architectures. The systems surveyed are: HP’s BMS,
Forest, ESF K/1’s Software Bus, ESF Kernel/2r’s
Muse, Polylith, Arcadia’s Q, Weaves. Further details
on the application of such framework to existing sys-
tems can be found in [SP93].

This paper outlines the SBUS attributes and char-
acteristics and illustrates its use by characterizing
aspects of the Arcadia’s Q system [Hei92, MH192,

May92]2. Q is a key interoperability component in
the Arcadia set of environment components; it is an
enhanced remote-procedure-call component which al-
lows a client to invoke an arbitrary server dynamically.
Q has been extensively used in the integration of Ar-
cadia SEE components.

3 SBUS Framework: Attributes and
Characteristics

This section describes a Software BUS reference
framework, denoted SBUS, for the description and
comparison of SEE software bus systems. It consists
of a set of attributes or characteristics. The objective
of this framework is to help us understand the charac-
teristics of such systems in order to define guidelines
for using them in the construction of SEEs. As our in-
vestigations proceed, new attributes are being defined,
and old ones are refined.

3.1 Primary Purpose

This attribute describes the primary purpose or ob-
Jective of the software bus system.

For example, a key objective of the Q system is to
support the interconnection of multi-lingual software
components for execution in heterogeneous environ-
ments.

3.2 Communication Model

This attribute describes the kind of communica-
tion model supported by the software bus, i.e., how
components communicate. There are many sub-
characterizations of the ways components communi-
cate, as described below.

1. Direct vs. Mediated Commaunication. This at-
tribute describes whether the software bus pro-
vides a dedicated communication channel be-
tween a sender (of a message) and a receiver, or
the message is intercepted and delivered by an
external agent.

2. Poini-to-point vs. Broadcast vs. Mulli-cast. This
attribute typically applies to message-based sys-
tems. These elements are as follows:

¢ Point-to-point. The sender explicitly identi-
fies the receiver.

2We note that the Q system may have evolved since our
evaluation, which was based on the documentation available
and discussions with its developers.




¢ Broadcast. The message is broadcast to ev-
ery component that may be listening in the
environment

e Multi-cast - There is some selection mecha-
nism that identifies a subset of components
to receive the message.

3. Client/server or peer-to-peer. This attribute de-
scribes whether, within a single thread of exe-
cution, the communication between two compo-
nents is client/server or peer-to-peer.

Client/server is an environment where the re-
quester (client) of a service is on one system and
the supplier (server) of the service is potentially
on another system. Their arity may vary:

| e multi-client, where more than one client
| makes requests of the server;
|
|

e multi-server, where one client makes multi-
ple requests to multiple servers; and

; o multiple client and multiple server.

Peer-to-peer is an environment where two clients

(potentially on separate processors) can submit

requests to one another over a single logical con-

nection - that is, a single communications se-

quence over the network. Each client in this case
. can also be a server.

4. Location Transparency. This attribute describes
whether a component needs to know the location
of the component with which it communicates.

5. Naming. This attribute describes whether the
components for communication need to be ad-
dressed explicitly. There are cases where abstract
names can be used.

Example: The Q system supports the following
communication model:

1. Direct communication
2. Point-to-point communication

3. Client/server system, supporting multi-client,
multi-server, or multi-client/server.

4. Location. Client is aware of the location of the
server.

5. Naming. Explicit addressing.

3.3 Run-time Behavior

This attribute describes the run-time characteris-
tics supported by the software bus.

In the Q system, the client issues a service request
by sending a message to the server process. The client
can continue processing, if appropriate. The server
remains inactive until it is awakened through a signal
based notification mechanism to process the request.

3.4 Bus Interface Description

This attribute describes how components use or
interface with the bus, e.g., via message-based,
procedure-call-based semantics, or some variant. It
also describes the interface and its parameters.

Example: Q supports a procedure call interface.
The client specifies: server (machine, server id, ver-
sion), service type, and Q-data representation (QDR)
buffer.

3.5 Binding Time

This attribute describes the binding time. “Early
binding” implies static/compile time association
whereas “late binding” implies run-time association.
However, there can be several levels of binding. For
example: i) When is the association between an ab-
stract service name and the actual physical software
that implements the service made? ii) When is the
association between the service requester and the ser-
vice provider made? iii) Does the service requester
have to know apriori what services exist in the envi-
ronment? iv) Can services be dynamically added to
an environment and be accessed by other components
in a non-intrusive way (without recompilation or re-
linking of existing components)?

Example: Q supports late binding.
3.6 Data Granularity and Type

This attribute describes the granularity of the data
being passed by the bus.

Example: Q supports both primitive types (i.e., in-
teger, string, boolean, and float) and composite types
that are based on combination of primitive types using
vectors and record structures.




3.7 Process Granularity

This attribute describes the granularity of the pro-
cess elements being communicated (e.g., routine, pro-
cedure, operating system process, Ada task).

Example: Q supports communication between
UNIX processes.

3.8 Multilingual Support

This attribute describes whether the bus allows
communication between components written in dif-
ferent languages, and, if so, what kind of language
bindings are provided.

Example: Q supports multiple languages, C, Ada,
C++, E, LISP, and Prolog.

3.9 Data Translation

This attribute describes whether data translation is
supported and how transparent this translation is to
the communicating components.

Example: In Q, data translation is not transparent
to the application. The Q client explicitly encodes
its arguments prior to issuing a remote procedure call
(RPC) and explicitly decodes any returned results.

3.10 Protocols

This attribute describes the underlying protocols
used to implement the bus. It may describe whether
the message content at different levels of abstraction
conform with some standard protocol.

Example: Q is implemented on top of modified
RPC (ARPC). It also depends on Sockets, TCP/IP,
UDP. It uses a data representation protocol (QDR).

3.11 I/0O Synchronization

A bus interface can be synchronous, asynchronous
or both, as follows:

e Synchronous protocol - a communications proto-
col in which the component acting as client sus-
pends execution of its current process until it re-
ceives a response from either the component act-
ing as server or the software bus.

e Asynchronous protocol - a communications pro-
tocol in which the component acting as client does
not wait for a response from the component act-
ing as server even though one may be expected in
due course (this implies that responses are han-
dled either by polling or interrupts).

This attribute should also specify whether the re-
questing component blocks when communicating with
other component via the bus.

Example: Q supports synchronous and signal-based
asynchronous communication. In signal-based asyn-
chronous communication, the sockets are configured
for asynchronous I/0O. When a service request arrives
at the socket, a signal is sent to the service dispatcher.
The service dispatcher will call the appropriate service
procedure to furnish the service requested. The ser-
vice procedure may “acknowledge” completion of the
service allowing the client to continue execution con-
currently with the service procedure.

3.12 Triggering

This attribute describes whether the software bus
provides the capability to intercept messages on the
bus and trigger actions based on those messages.

Example: In Q, there is no support for triggering.
3.13 Threads

Threading refers to the ability to divide a program
into multiple parts that execute concurrently within
the same virtual address space. A multi-threaded
program has multiple points of execution interleav-
ing faster computational operations with slower op-
erations. This attribute describes whether the bus is
single or multi-threaded. Other applicable questions
may deal with whether the server is re-entrant.

Example: Q is single threaded for C and multi-
threaded for Ada. It was designed to support con-
currently active communicating servers.

3.14 Scope

This attribute describes the scope of the bus, i.e.,
whether the bus is used for coordinating communica-
tion of components: a) within a single process family;
b) across multiple process families within the same
processor; or ¢) across multiple process families and
across multiple processors.




3.15 Distribution

This attribute describes whether the bus supports
distribution across multiple processors and whether
this distribution is transparent to the components. It
should also describe how distribution is specified and
whether it is static or dynamic.

Example: Q supports distribution but it is not
transparent to application.

3.16 Component Interface Specification

This attribute describes whether there is linguistic
support for specifying component interfaces. It should
also describe whether it supports the generation of
interface stubs.

3.17 Registration

This attribute describes how components are reg-
istered in the software bus environment. It should
include information such as: a) whether the registra-
tion of components is static or dynamic; b) how com-
ponents are changed or replaced; c¢) whether there is
support for dynamic update of communicating com-
ponents.

3.18 Exception Handling

This attribute describes how exceptions are gener-
ated, captured, handled, and/or propagated.

3.19 Security

This attribute describes the security model sup-
ported by the bus, if any. For example, whether
there are access control mechanisms provided to en-
sure varying degrees of secure communication.

3.20 Versioning
This attribute describes any versioning support.
3.21 Software Bus Development Tools
This attribute describes the software bus tools (e.g.,
development, generative, analysis, browsing) which
support the development of software bus applications.

3.22 Platform Dependencies

This attribute describes any hardware and/or soft-
ware dependencies.

Example: Q is built on SUN XDR/RPC.
3.23 Strengths

This attribute describes the primary strengths of
the architecture supported by this software bus.

3.24 Weaknesses

This attribute describes the main limitations of this
architecture, e.g., hardware, software, language, error
detection/correction, functionality, etc.

4 Conclusions.

In this paper we described the SBUS framework,
a framework for the understanding and comparison
of systems considered as SEE software buses. The
SBUS framework consists of a set of attributes and
characteristics. A survey of such systems using the
framework has been done and it appears in [SP93]
This framework has benefitted (i.e., was enhanced) as
a result of studying those system’s descriptions. In
this paper, we exemplify the use of the framework by
characterizing the Arcadia Q system.

It is worth noting that our objective is not to com-
pare whether a software bus system is “better” than
the other; the objective of the SBUS framework is to
help us understand the characteristics of such systems
in order to define guidelines for using them in the con-
struction of SEEs.

Other candidate systems mentioned in literature
but not addressed here are: DCE, Ole2, SCORPION,
CORBA, ToolTalk, Matchmaker/MIG, Mercury, Isis,
SLI, Abe, Conic, Durra, Infuse, HPC/HRPC, Mer-
cury, MLP. We plan to continue our work by charac-
terizing those systems using the SBUS framework.

This document is the continuation of investiga-
tions towards understanding the complex issue of com-
ponentization and interconnectivity of heterogeneous
components. Much more work lies ahead before we
can fully understand when and how those components
should be interconnected to fulfill specific software
projects and domain requirements.

5 Acknowledgement.
We would like to acknowledge the interesting and

fruitful discussions we have held with D. Heim-
bigner, S. Sutton and M. Maybee on this subject.




This work was supported by the Advanced Research
Projects Agency, under contracts #£N00039-91-C-0151
and N00039-95-C-0017, issued by the Space and Naval
Warfare Systems Command.

References

[Hei92]

[KPS93]

[May92]

[MH*92]

[NIS93]

[Pen93]

[PR93]

[PS91]

D. H. Heimbigner. ARPC: An Augmented
Remote Procedure Call System. Technical
Report CU-Arcadia-100-92, Department of
Computer Science, University of Colorado,
October 19 1992.

A. Karrer, M. H. Penedo, and C. Shu.
A Survey of Software Engineering Envi-
ronment Architecture Approaches. Techni-
cal Report Arcadia-TRW-93-007, TRW, Re-
dondo Beach, CA, 1990, November 1993.

M. J. Maybee. @: A Multi-lingual Inter-
process Communications System - Reference
Manual, February 1992.

M. J. Maybee, D. H. Heimbigner, et al.
Q: A Multi-lingual Interprocess Communi-
cations System for Software environment
Implementation. Technical report, Depart-

ment of Computer Science, University of
Colorado, 1992.

Reference Model for Frameworks of Soft-
ware Engineering Environments. Technical
Report NIST Special Publication 500-211
and ECMA /TC33 Technical Report TR/55,
3rd Edition, August 1993.

M. H. Penedo. Towards understanding Soft-
ware Engineering Environments. In Pro-
ceedings of TRW Conference on Integrated
Computer-Aided Software Engineering, Cal-
ifornia, November 1993. also in TRW Tech-
nical Report IMPSEE-TRW-93-003.

M. H. Penedo and W.E. Riddle. Process-
sensitive Software Engineering Environment
Architectures - Summary Report. In ACM
Software Engineering Notes, July 1993.

M.H. Penedo and C. Shu. Acquiring Expe-
riences with the Modeling and Implemen-
tation of the Project Life-cycle Process -
the PMDB work. IEE and British Com-
puter Society Software Engineering Journal,
September 1991.

[PSSS89] M.H. Penedo, C. Shu, S. Simpson, and

[SP93]

S. Sykes. PMDB+ Viewer Architecture Re-
port. Technical Report Arcadia-TRW-89-
016, TRW, December 1989.

C. Shu and M. H. Penedo. SEE Software
Bus Survey. Technical Report IMPSEE-
TRW-93-008, TRW, Redondo Beach, CA,
December 1993.




SEE Software Bus Survey
TRW

December 1993

C. Shu
M. H. Penedo

TRW Technical Report IMPSEE-TRW-93-008

Abstract

This document presents an initial survey of systems which have been characterized as software buses
and play an important role in tying together components in Software Engineering Environment
(SEE) architectures. It documents work in progress. The survey has been based on a subset of
the papers listed in the document; thus, it may be incomplete and inaccurate with respect to the
current status of such systems. The systems surveyed are: HP’s BMS, Forest, ESF K/1’s Software
Bus, ESF Kernel/2r’s Muse, Polylith, Arcadia’s Q, Weaves. Other candidate systems should be
added in later versions of this document.

A framework consisting of attributes and characteristics was defined and used for describing
those systems’ characteristics.




. Contents

1 Introduction 3
2 SBUS Framework: Attributes/Characteristics 3
2.1 Primary Purpose . . . . . . .. e 3
2.2 Communication Model . . . . . . . . ... e 3
2.3 Run-time Behavior . . . . . . . . . . i i e e e 4
2.4 Bus Interface Description . . . . . . . .. .. L Lo o e 4
2.5 Binding Time . . . . . . . . o e e e 4
2.6 Data Granularity and Type . . . . . . . . .. . e 5
2.7 Process Granularity . ... .. . .. . .. e 5
2.8 Multilingual Support . . . . . . . ... e 5
2.9 Data Translation . . . . . . . . o i i i i e e e 5
2.10 Protocols . . . . . e e e e e e e e e e 5
2.11 I/0 Synchronization . . . . .. ... ..t 5
212 Triggering . . . . v o v v i e e e e e e e e e e e e e 5
2.13 Threads . . . . . v i i o e e e e e e e e e e e e e e e e e e e 6
214 SCOPE v v v v e e e e e e e e e e e e e e e e e e e e e e 6
2.15 Distribution . . . . . . . . L e e e e e e e e e e e e e e 6
2.16 Component Interface Specification . . .. ... ... ... ... .. ... ... 6
2.17 Registration . . . . . . . . o e e e e 6
. 2.18 Exception Handling . . . . ... .. .. . e e 6
2,10 SeCUTity . . v v v v e e e e e e e e e e e e e e e e e e e e e e 6
2.20 VeTSIONING . . . v v v v vttt e e e e e e e e e e e e e 6
2.21 Software Bus Development Tools . . . . . .. .. ... ... .. 7
2.22 Platform Dependencies . . . . . . . . . .. o e e 7
2.23 Strengths . . . . . ... e e e 7
2.24 Weaknesses . . v . v v v v i e e e e e e e e e e e e e e e e e e e e e e e 7

3 Systems Surveyed 7
3.1 BMS . ... .. ... e e e e e e 7
3.2 FOrest . . . . e e e e e e e e e e e e e e e e e e e e e e e 9
3.3 K/ISoftware Bus. . . ... .. ..ot i 10
3.4 K/2r MUSE Software Bus. . . . .. ... ... .. ... 14
3.5 Polylith Software Bus. . . . . . ... ... ... ... . . 15
3.6 Q. . e e e e 17
3.7 Weaves o v v v i et e e e e e e e e e e e e e e e e e e e e e e e e e e 18

4 Conclusions. 20
5 Acknowledgement. ‘ 20
A Software Bus Survey Highlights. 23




1 Introduction

The term “software bus” has emerged frequently in recent years for describing a class of archi-
tectures that share a common component (denoted a software bus) which implements an abstract
communications model for the interoperation of components in a distributed environment. There
are some essential characteristics and behavior of these systems that delineate them from other
architectural approaches. This report documents work in progress and presents an initial survey
of systems which have been characterized as software buses and play an important role in tying
together components in Software Engineering Environment (SEE) architectures. Software bus com-
ponents are currently being used as a key mechanism for SEE tool/component communication and
interoperation.

In order to better understand and compare software bus components, we have identified a
reference framework, i.e., a set of attributes/characteristics which are applicable towards describing
such systems. This set is evolving as our investigations proceed and our knowledge increases. The
attributes and characteristics are described in Section 2.

Section 3 presents a first draft of a survey of systems which have been characterized as software
buses; it uses the framework described in Section 2. This survey is preliminary and it has been
based on a subset of the documentation listed in the document, since some documents were obtained
recently. Therefore, this survey may be incomplete and inaccurate with respect to the current
status of such systems. The systems surveyed are: HP’s BMS, Forest, ESF K/1’s Software Bus,
ESF Kernel/2r’s Muse, Polylith, Arcadia’s Q, Weaves. Other candidate systems will be added in
later versions of this document.

A summary of the information in section 3 appears in table form in Appendix A.

2 SBUS Framework: Attributes/Characteristics

This section describes a reference framework, denoted SBUS framework, for the description and
comparison of SEE software bus systems. It consists of a set of attributes or characteristics,
described next. The objective of this framework is to help us understand the characteristics of
such systems in order to define guidelines for using them in the construction of SEEs. As our
investigations proceed, new attributes are being defined, and old ones are refined.

2.1 Primary Purpose

This attribute describes the primary purpose or objective of the software bus system (one or more
software components).

2.2 Communication Model

This attribute describes the kind of communication model supported by the software bus, i.e.,
how do components communicate. There are many sub-characterizations of the ways components
communicate, as described below.

1. Direct vs. Mediated Communication. This attribute describes whether the software bus
provides a dedicated communication channel between a sender (of a message) and a receiver,




or the message is intercepted and delivered by an external agent.

2. Point-to-point vs. Broadcast vs. Multi-cast. This attribute typically applies to message-based
systems. These elements are as follows:

¢ Point-to-point. The sender explicitly identifies the receiver.

e Broadcast. The message is broadcast to every component that may be listening in the
environment

e Multi-cast - There is some selection mechanism that identifies a subset of components
to receive the message.
3. Client/server or peer-to-peer. This attribute describes whether, within a single thread of

execution, the communication between two components is client/server or peer-to-peer.

Client/server is an environment where the requester (client) of a service is on one system and
the supplier (server) of the service is potentially on another system. Their arity may vary:

¢ multi-client, where more than one client makes requests of the server;
e multi-server, where one client makes multiple requests to multiple servers; and

¢ multiple client and multiple server.

Peer-to-peer is an environment where two clients (potentially on separate processors) can sub-
mit requests to one another over a single logical connection - that is, a single communications
sequence over the network. Each client in this case can also be a server.

4. Location Transparency. This attribute describes whether a component needs to know the
location of the component with which it communicates.

5. Naming. This attribute describes whether the components for communication need to be
addressed explicitly. There are cases where abstract names can be used.

2.3 Run-time Behavior

This attribute describes the run-time characteristics supported.

2.4 Bus Interface Description

This attribute describes how components use or interface with the bus, e.g., via message-based,
procedure-call-based semantics, or some variant. It also describes the interface and its parameters.

2.5 Binding Time

This attribute describes the binding time. “Early binding” implies static/compile time association
whereas “late binding” implies run-time association. However, there can be several levels of bind-
ing. For example: i) When is the association between an abstract service name and the actual
physical software that implements the service made? ii) When is the association between the ser-
vice requester and the service provider made? iii) Does the service requester have to know apriori

4




what services exist in the environment? iv) Can services be dynamically added to an environment
and be accessed by other components in a non-intrusive way (without recompilation or relinking of
existing components)?

2.6 Data Granularity and Type

This attribute describes the granularity of the data being passed by the bus.

2.7 Process Granularity

This attribute describes the granularity of the process elements being communicated (e.g., routine,
procedure, operating system process, Ada task).

2.8 Multilingual Support

This attribute describes whether the bus allows communication between components written in
different languages, and, if so, what kind of language bindings are provided.

2.9 Data Translation

This attribute describes whether data translation is supported and how transparent this translation
is to the communicating components.

2.10 Protocols

This attribute describes the underlying protocols used to implement the bus. It may describe
whether the message content at different levels of abstraction conform with some standard protocol.

2.11 1I/0 Synchronization

A bus interface can be synchronous, asynchronous or both, as follows:

e Synchronous protocol - a communications protocol in which the component acting as client
suspends execution of its current process until it receives a response from either the component
acting as server or the software bus.

¢ Asynchronous protocol - a communications protocol in which the component acting as client
does not wait for a response from the component acting as server even though one may be
expected in due course (this implies that responses are handled either by polling or interrupts).

This attribute should also specify whether the requesting component blocks when communicat-

ing with other component via the bus.

2.12 Triggering

This attribute describes whether the software bus provides the capability to intercept messages on
the bus and trigger actions based on those messages.




2.13 Threads

Threading refers to the ability to divide a program into multiple parts that execute concurrently
within the same virtual address space. A multi-threaded program has multiple points of execu-
tion interleaving faster computational operations with slower operations. This attribute describes
whether the bus is single or multi-threaded. Other applicable questions may deal with whether the
server is re-entrant.

2.14 Scope

This attribute describes the scope of the bus, i.e., whether the bus is used for coordinating com-
munication of components: a) within a single process family; b) across multiple process families
within the same processor; or c) across multiple process families and across multiple processors.

2.15 Distribution

This attribute describes whether the bus supports distribution across multiple processors and
whether this distribution is transparent to the components. It should also describe how distri-
bution is specified and whether it is static or dynamic.

2.16 Component Interface Specification
This attribute describes whether there is linguistic support for specifying component interfaces. It
should also describe whether it supports the generations of interface stubs.

2.17 Registration

This attribute describes how components are registered in the software bus environment. It should
include information such as: a) whether the registration of components is static or dynamic; b)
how components are changed or replaced; c) whether there is support for dynamic update of
communicating components.

2.18 Exception Handling

This attribute describes how exceptions are generated, captured, handled, and/or propagated.

2.19 Security

This attribute describes the security model supported by the bus, if any. For example, whether
there are access control mechanisms provided to ensure varying degrees of secure communication.

2.20 Versioning

This attribute describes any versioning support.




2.21 Software Bus Development Tools

This attribute describes the software bus tools (e.g., development, generative, analysis, browsing)
which support the development of software bus applications.

2.22 Platform Dependencies

This attribute describes any hardware and/or software dependencies.

2.23 Strengths
This attribute describes the primary strengths of the architecture supported by this software bus.

2.24 'Weaknesses

This attribute describes the main limitations of this architecture, e.g., hardware, software, language,
error detection/correction, functionality, etc.

3 Systems Surveyed

This section presents a first draft of a survey of systems which have been characterized as software
buses; it uses the framework described in Section 2. This survey is preliminary and based on a
subset of the papers referenced. It is worth pointing out that sometimes different papers contradict
each other since they reflect evolution of those systems but also, in some cases, the description
may represent thought processes and concepts not yet implemented in the existing systems. More
information about the SEEs which include software bus systems can be found in [KPS93].

Note that the attributes Exception Handling, Security and Versioning do not appear in the
description of the systems, since they were added to the framework just before this document was
published. Also note that some sub-sections were omitted intentionally; it indicates that either the
information was not available or was not explicit in the documentation. For example, the attributes
“Strengths” and “Weaknesses” do not have values since, at this stage in the investigation, we do
not feel confident we really understand those systems.

3.1 BMS

The Broadcast Message Server (BMS) [BTJ89, Kra89, Cag90] was originally developed as part of
the Hewlet Packard SoftBench environment but it works as an autonomous (set of) component(s)
which have been ported to many platforms. Tools can communicate requests for action and can
notify the completion of actions via the BMS. The broadcast nature of the BMS communication
allows the set of tools managed by a BMS and interested in a particular message to be extended
without requiring any change in the tools that send the messages.

Primary Purpose. The BMS is a broadcast message server which serves as a control integration
framework for tools. Tool communication is based on selective broadcast.




' Communication Model. The BMS supports the following communication model:
1. Mediated communication via the BMS.
2. Event-driven selective broadcast (single broadcast server per process family).
3. Multi-client, Multi-server, Multi-client/server.
4. Location transparent to communicating componernts.

5. Anonymous addressing (Sender is unaware of who the receivers are).
Run-time Behavior. Events occur in the system when tools send messages to the BMS Server.
The BMS Server rebroadcasts these messages to all tools (or components) that have expressed an

interest in that particular type of message.

Bus Interface Description. The BMS provides a message-passing interface with support for
procedure call emulation. The interface parameters include: Request id, msg type (notification,
request, or failure), command class, command name, context, and arguments.

Binding Time. It seems that the binding of name to component is done at tool registration
time. However, any tool that registered an interest on a particular message is notified at run time.

‘ Data Granularity and Type being transferred. The message arguments are character strings.
Process Granularity. The granularity is at the UNIX process or tool level.
Multilingual Support. No support. The language supported is C.

Data Translation. No provision. However, data translation can be accomplished by introducing
translator components, activated using the same BMS mechanism.

Protocols. Implemented using Unix Sockets. An Abstract Tool Protocol is currently being stan-
dardized by CASE Communique to be used with message passing systems.

I/0 Synchronization. It supports synchronous and asynchronous communication.

Triggering. The event-based mechanism can be viewed as a form of triggering capability. Users
can define their own triggers with the Encapsulator.

Threads. Single threaded.

Scope. Scoping is identified by the triple (hostname, working directory, filename).




Distribution. Yes, supported by the SPC (Software Subprocess Control). It is not clear whether
BMS’s running on multiple CPUs can communicate with each other.

Component Interface Specification. The Encapsulation Description Language (EDL) is used
for encapsulating tools to run with the BMS. The BMS maintains tables that provide implicit
association between components at run-time.

Registration. Apparently, tools are registered at compile time. However, it seems that informa-
tion about which event a tool wishes to see or be notified are passed to the BMS when the tool is
activated.

S/W Bus Development Tools. The Encapsulator [Dav89, Cag89a, Cag89b] provides a means
of integrating tools into the HP Softbench user-interface and BMS. The encapsulation consists of
the Encapsulation Description Language (EDL) which describes a user-interface and corresponding
communication across the BMS. The communication information consists of messages which it will
respond to and messages it will generate in response to user-interface events.

3.2 Forest

The Forest system [GI90] extends the Field and the HP BMS broadcast approach to support user

defined control policies over tool interaction.

Primary Purpose. The basic idea is, instead of simply routing messages between tools, a mes-
sage server consults an invocation policy description that determines how and when messages should
pass between tools.

Communication Model. Its communication is similar to BMS’s model with the addition of
policy constrained broadcast, i.e.,

1. Mediated communication

2. Event-driven selective and policy constrained broadcast.
3. Multi-client, Multi-server, Multi-client/server.

4. Location transparent

5. Anonymous addressing

Run-time Behavior. Similar to BMS, but rather than simply routing messages between tools,
the message server consults an invocation policy description that determines how and when mes-
sages pass between tools.

Bus Interface Description. It supports a message-passing interface. Its interface seems to be
more generic than BMS’. The arguments are specified character string patterns.




Binding Time. It appears similar to the BMS system.

Data Granularity and Type being transferred. The message arguments are character strings
Process Granularity. The granularity is at the ‘UNIX process or tool level.

Multilingual Support. No support. The language supported is C.

Data Translation. No provision.

Protocols. Implemented using Unix Sockets. Message pattern matching is based on condition-
action pairs.

I/0 Synchronization. It supports synchronous and asynchronous communication.
Triggering. It supports event-based and condition-based triggering.

Threads. Single threaded.

Scope. It seems to span multiple process families.

Distribution. Yes. Supported with SPC (Software Subprocess Control)

Component Interface Specification. It maintains tables that provide implicit association be-
tween components at run-time, together with condition-action pairs.

3.3 K/1 Software Bus.

The Eureka Software Factory (ESF) project! has a key objective to prepare the foundation for Soft-
ware Factories in Europe. A major focus of the ESF project is on two critical enabling technologies:
process support, the use of programmable models of factory activity to make the complex workflow
of software development teams subject to accurate planning and continued fine-tuning; and software
componentry, the use of abstract interfaces and environment standards (e.g., software bus) to en-
able “plug-in” access to multiple system platforms, thus encouraging more generic software design
and more frequent software re-use. The “Software Bus” (SwB) [FNBG91, BFM, Fou90, ESF90]
is an important concept of ESF environments, meaning an abstract communication channel which
hides distribution and allows the exchange of data and control information among environment
components.

Kernel/1 is considered to be the first industrial implementation of an ESF Factory Support
Environment (FSE) Framework. It was built by three industrial partners: CAP Gemini Innovation,
CAP debis GEI, and Sema Group. Kernel/1 consists of a set of software tools and libraries which

1ESF is a ten-year cooperative project, set up at the end of 1986 under the Eureka programme by a powerful
European consortium of users, suppliers and research institutes.

10




support building, customizing, running and extending a software factory. It operates on networks
of UNIX workstations.

The Kernel/1 Software Bus [Mor92, Mor93b, Mor93a, M+93] provides a channel through which
interconnected components can communicate. It allows for components to be “plugged” in and
out of the environment and to be replaced in a non-intrusive way. Components supply and/or use
services of the Factory. At build time, the SwB provides means of describing the functionality of
components in terms of abstract services they provide or require as well as their implementation
details. The Kernel/1 SwB is an extension of the remote procedure call (RPC) mechanism which
includes an abstract language ASN.1 and supports components written in C and Lisp; Ada and
C++ are in the works. It was built by the Sema Group. It also provides facilities for notification
of events, a CAP Gemini extension to the HP Softbench.

Primary Purpose. An industrial implementation of the ESF S/W Bus to provide an interaction
mechanism between two or more Software Factory Components. It provides a channel through
which interconnected components can communicate. It allows for components to be “plugged” in
and out of the environment and to be replaced in a non-intrusive way.

Communication Model. Its communication model is as follows:
1. Direct communication, with the client identifying the server by an abstract service name.
2. Point-to-Point, where the client identifies specifically the server it wishes to connect to.
3. Client/Server. A component in K/1 can be a client or server.

4. Location transparent, where the client is not aware of where the server resides (local or
remote), it only knows about abstract service names.

5. Explicit addressing by abstract service name.

Run-time Behavior. At run time, providers of services (servers) “register” with the Software
Bus (via SWB_Ezport() calls). For each registered service, a ticket is created in the local service
Component Locator’s ticket pool and will be made available for the first client component requesting
the same service (via the SWB_Import() call). As soon as the server has successfully registered with
the SwB, it goes into an infinite loop, listening for request on the service. When a client component
registers with the Locator it receives the corresponding ticket which establishes the binding with
the server component that exported the service. Until the client returns the ticket, each request
issued by the client is guaranteed to be serviced by the same server.

Bus Interface Description. The SwB interface emulates the procedure call semantics. From
the client program’s perspective, a simple procedure call such as SWB_Import(service_name) allows
a client to request a service. Control Exchange Statements (CES) are procedure call interfaces to
the operations (methods) associated with the services. A client invokes an operation associated
with a service via the CES (i.e., the programming language specific procedure call interface) defined
for that operation. '




Binding Time. Binding between an abstract service name and its implementation code is accom-
plished at compile and link time, therefore addition of new operations or modification of existing
operations will require recompilation and relink.

Binding between the service requester (client) and the service provider (server) is dynamic. The
Locator provides the run-time management of services and makes the association between a server
exporting a service and the client requesting for that service through the assignment of tickets.
Once the client holds the ticket to a server, all subsequent CESs are guaranteed connection to the
same server.

Data Granularity and Type being transferred. Two categories of data types are supported:
primitive (i.e., atomic) and constructed (i.e., structures whose elements are members of either
primitive or constructed data types). The SwB provides a set of APIs for manipulating abstract data
types. The abstract definition of these data types are expressed in the Service Abstract Description
Languages (SADL). A set of pre-defined types are provided which include Array, Record, Choice,
Set, Bag, Directed Graphs, Net, Tree, and List.

Process Granularity. The SwB supports both procedure and Unix process level granularity.
An abstract service typically provide multiple operations that are defined in the Service Abstract
Description Module in SADL. Associated with each operation there is a corresponding procedure
that implements the semantics of the operation. The procedure can in turn invoke a separate
executable if so desired.

Multilingual Support. It supports multiple languages, C, C++, Le-LISP.

Data Translation. The SwB implements the concept of “plugs” which perform the encoding
and decoding of arguments before and after transmission. There are two layers of software that
constitute the communications interface part of the Kernel/1 SwB. The first layer, called the Plug,
is the language dependent portion that describes the data type and the CES of a service in terms
of the programming language representation of its component. It handles data conversion (from
client internal representation to external representation, and from external representation to server
internal representation). A Plug is specific to a given installed Component. The second layer,
called the Agent, is the underlying language independent software that marshals/unmarshals data
to/from the form of transmission on the SwB communication channel. The Agent also calls the
procedure which corresponds to the Request received from the client.

Protocols. Kernel/1 Components communicate with the Locator through Unix named pipes.
Locators communicate between themselves across the network through UDP Sockets. Agents are
part of the communication interface implemented on top of XDR/RPC.

1/0 Synchronization. The Kernel/1 Software Bus interface can be both synchronous and asyn-
chronous. It is not clear from the documentation whether the mode of synchronization can be
controlled by the client program, or how and where the synchronization mode is specified.




Triggering. It does not support triggering.

Threads. Multi-threading is an optional feature via SunOS Light Weight Processes (LWP). Prim-
itives are provided to attach a service instance to an LWP thread; different threads can therefore
offer different service instances without having to handle, in one thread, events concerning another
thread. :

Scope. There is one Software Bus Locator executing and one run-time environment for each
processor. The service name space therefore is assumed to be flat; all service names must be
unique within a distributed environment. It is not clear from the documentation whether there
can be multiple implementations of the same service. For example, there might be two different
editors (e.g., vi and Emacs) available in the environment that can potentially offer the same Editing
service. It is not clear whether and how a user can dynamically switch between v: and Emacs. It
also is not clear how multiple service instances can execute currently if a ticket associated with a
Server must be returned before the next instance can initiate.

Distribution. The location of a service is transparent to the client application. However, it is
not clear from the documentation where and when the location of a Server is specified; whether it is
at compile time or at Component installation time; or whether the Server location can be changed
at run-time.

Component Interface Specification. Kernel/1 Software Bus provides three separate languages
for describing Software Bus Components:

e Component Type Description Language (CTDL) - a textual description of a Component Type
which specifies those services this Component exports and imports.

¢ Service Abstract Description Language (SADL) - a textual specification of the machine in-
dependent aspects of an FSE service. It includes an abstract description of the interface to
its operations, a semantic description of the operations, and a description of its Universe of
Discourse (a set of concepts that are known to a given component.)

e Service Representation Description Language (SRDL) - a formal language in which the im-
plementation description of a service and its data types according to the Component role
(client or server) and programming language. It furnishes the mappings between the abstract
operations and the actual procedure or function calls found in the Component application
code. There is one SRD module for each language implementation of a service.

Registration. It seems to support dynamic addition of new components but not change of ex-
isting components.

One of the first things that an executing Component must do, is to register its presence with the
Software Bus run-time system. This is accomplished through the SWB_Ezport call. The Locator
verifies that the Component Type is known in its Component Type database. If the verification
process is successful, then the server Component is provided with a ticket which it will use when
binding with the client Component requesting its services.

13




S/W Bus Development Tools. The Kernel/1 SwB development facility include the compilers
for CTDL, SADL, and SRDL; and the Software Bus library routines.

Platform Dependencies. The Kernel/1 SwB runs on the SPARC, Sun3, Sun4, and PC (under
MS Windows/3.1)

3.4 K/2r MUSE Software Bus.

Kernel/2r [AD*92, AH, Uni91] or K/2r is a research prototype of an ESF Factory Support En-
vironment; it was developed at the University of Dortmund, Germany. It supports a layered
distributed computing architecture designed to disperse services and data across an enterprise net-
work. MUSE [Hol92a, Hol92b, Sch91, HS91] is K/2r’s software bus. It is the nucleus of the K/2r
environment that connects the process components and service components. It also implements a
number of message handling systems, not just one solution like HP’s Broadcast Message Server.

Primary Purpose. MUSE is a research prototype implementation of the ESF S/W Bus, whose
primary purpose is to support architectural extensibility through the concept of “plug and play”
that enables the plug-in and interplay of new architectural components with the software bus. Its
main purpose is to manage the interoperation of components in a distributed environment by means
of autonomous transaction processing.

A MUSE instance basically consists of an S-transaction repository, an S-transaction Handler (the
S-transaction Definition Language (STDL) interpreter), an application interface, and an interface
to the encapsulated service components. S-transactions are provided in order to describe the
cooperation of autonomous components, located at geographically dispersed sites. For more on
S-transactions, see [VEH91].

Communication Model. MUSE’s communication model supports the concept of transaction-
based communication; it is as follows:

1. Server mediated communication.
2. Point to point.

3. Peer-to-peer.

4. Location transparent.

5. Explicit addressing by abstract service name.

Run-time Behavior. An execution plan, defined using the S-transaction definition language
(STDL), is defined at tool installation time and stored in the S-transaction repository at all
participating sites. An S-transaction interpreter/handler takes these plans and processes the S-
transactions by initiating the required local and remote transactions.

14




Bus Interface Description. An Interoperation Description Language (IDL), based on the S-
transaction Definition Language (STDL) [MH91, VEH91] is provided as the vehicle for specifying
cooperation between autonomous components in a distributed environment. The underlying S-
transaction system model is that of a set of cooperating peer components where the relationship
between the components are defined with S-transaction type definitions. An S-transaction type
definition contains an execution plan specifying what requests are to be processed where in the
network. This type definition is expressed in STDL.

Binding Time. The inter-relationships between components are dynamically defined within S-
transaction type definitions. The type definitions, encoded in STDL scripts, are defined at instal-
lation time and stored in a repository at all participating sites. These type definitions contain an
execution plan indicating what requests are to be processed where (i.e., local or remote).

Data Granularity and Type being transferred. It supports C data types.

Data Translation. Data translation can be defined at registration time and it is transparent to
applications.

Protocols. The MCS (Multi-Communications System) on top of X400, TCP/IP, RPC.
I/O Synchronization. It supports synchronous communication.

Triggering. It seems that triggering can be programmed as S-transactions.

Threads. It is single threaded.

Scope. MUSE spans multiple process families.

Distribution. Yes, and distribution is transparent to applications.

Component Interface Specification. Components use the STDL language.
Platform Dependencies. SUN4 under UNIX.

3.5 Polylith Software Bus.

The Polylith system [Pur90, PSW91, CWP92, CH90] is a software interconnection system. It allows
programmers to configure applications from mixed-language software components and then execute
those applications in diverse environments.

Programmers specify components in terms of a Module Interconnection Language (MIL); Polylith
uses this specification to guide packaging (static interfacing activities such as stub generation, source
program adaptation, compilation and linking). At run time, an implementation of the bus abstrac-
tion may assist in message delivery, name service or system reconfiguration.

15




. Primary Purpose. Components can be implemented separately from the implementation of its
interfaces. Interfacing decisions can be encapsulated separately, using a software bus.

Communication Model. Polylith’s communication model is as follows:
1. Direct Communication with optional mediation.
2. Multicast.
3. Multi-server, Multi-client, Multi-client/server.

4. Location explicitly specified in a Module Interconnection Language (MIL) but not in an
application interface.

5. Addressing explicitly specified in MIL but not in application interface.

Bus Interface Description. Polylith supports primarily a message passing paradigm but it also
supports a procedure call interface.

Binding Time. It supports early binding, statically specified in MIL. However, it seems that
later versions support dynamic binding.

Data Granularity and Type being transferred. It supports: a) primitive types: integer,

. string, boolean, and float; b) composite types that are based on combination of primitive types
using vectors and record structures; ¢) Capability type; and d) Raw type: uninterpretable by any
interconnection substrate.

Multilingual Support. It supports multiple languages, C, C++, Ada, Pascal, Lisp, Prolog.

Data Translation. It seems that data translation can be defined via the MIL and it is transparent
to applications.

I/O Synchronization. It support synchronous and asynchronous communication'.
Triggering. No support for triggering.

Threads. Single threaded.

Scope. Flat space.

Distribution. It supports distribution.

Component Interface Specification. It provides a Module Interconnection Language for in-
terface specification.




3.6 Q

The Q system [Hei92, MH192, May92] is an important component in the Arcadia set of environment
components. It is an enhanced remote-procedure-call component which allows a client to invoke an
arbitrary server dynamically.

The Arcadia Research Project is being conducted by the Arcadia Consortium to develop inno-
vative technology in support of advanced SEEs. It is important to observe that there is not one
Arcadia environment but a combination of technology and components in support of environment
building.

Primary Purpose. The objective of the Q system is to support the interconnection of multi-
lingual software components for execution in heterogeneous environments.

Communication Model. The Q system supports the following communication model:
1. Direct communication
2. Point-to-point communication
3. Client/server system, supporting multi-client, multi-server, or multi-client/server.

4. Location. Client is aware of the location of the server.

o

. Naming. Explicit addressing.

Run-time Behavior. The client issues a service request by sending a message to the server
process. The client can continue processing, if appropriate. The server remains inactive until it is
awakened through a signal based notification mechanism to process the request.

Bus Interface Description. Q supports a procedure call interface. The client specifies: server
(machine, server id, version), service type, and Q-data representation (QDR) buffer.

Binding Time. Q supports late binding.

Data Granularity and Type being transferred. Q supports both primitive types (i.e., in-
teger, string, boolean, and float) and composite types that are based on combination of primitive
types using vectors and record structures.

Process Granularity. Q supports communication between UNIX processes.
Multilingual Support. Q supports multiple languages, C, Ada, C++, E, LISP, and Prolog.

Data Translation. In Q, data translation is not transparent to the application. The Q client
explicitly encodes its arguments prior to issuing a remote procedure call (RPC) and explicitly
decodes any returned results.




Protocols. Q is implemented on top of modified RPC (ARPC). It also depends on Sockets,
TCP/IP, UDP. It uses a data representation protocol (QDR).

I/O Synchronization. Q supports synchronous and signal-based asynchronous communication.
In signal-based asynchronous communication, the sockets are configured for asynchronous I/0.
When a service request arrives at the socket, a signal is sent to the service dispatcher. The service
dispatcher will call the appropriate service procedure to furnish the service requested. The service
procedure may “acknowledge” completion of the service allowing the client to continue execution
concurrently with the service procedure.

Triggering. There is no support for triggering.

Threads. Q is single threaded for C and multi-threaded for Ada. It was designed to support
concurrently active communicating servers.

Distribution. Q supports distribution but it is not transparent to application.
S/W Bus Development Tools. QGen is a Q stub generator.
Platform Dependencies. SUN XDR/RPC.

3.7 Weaves

Weaves {GR91] are networks of concurrently executing tool fragments that communicate by passing
objects. Its architectural characteristics lie between heavyweight parallel processes and fine-grain
dataflow.

Tool Fragments are small software components on the order of a procedure that perform a single
well-defined function. Each fragment executes as an independent thread, a light weight concurrent
process that shares memory with others of its kind.

Primary Purpose. The Weaves system is intended as an engineering medium for systems char-
acterized by streams of data. Its emphasis is on instrumentation, continuous observability and
dynamic rearrangement.

Weaves differs from Unix pipes in that: Weaves tool granularity is finer (i.e., at the procedure
level); Weaves process granularity is finer (i.e., light weight processes); Weaves permit multiway
communication; and Weave streams are structured.

Communication Model. Weaves’ communication model is as follows:

1. Indirect communication via shared data (i.e., “queues”).

2. Medium-grain, non-blocking data flow with finite buffering, FIFO stream access, and multiple
readers and writers.

3. Peer-to-peer (does not care where the message came from or where it goes).

18




4. Location transparent.

5. Communication is blind, i.e., no tool in a weave can tell where its input objects come from
or where its output objects go; no tool knows what form of transport service is being used;
and no tool is aware of a loss of connection.

Run-time Behavior. Weaves are a network of concurrently executing tool fragments that com-
municate by passing objects. Objects are transmitted from one tool fragment to another via ports
attached to queues. The queues, in turn, buffer and synchronize communication among tool frag-
ments.

Objects are passive flowing through the weaves. Only tool fragments are active, accepting
objects from ports, invoking the methods implemented by the objects, performing tool-specific
computations and passing objects downstream.

Bus Interface Description. Weaves supports a message-passing interface. Weaves is imple-
mented as a C++ object library.

Binding Time. Weaves supports continuous incremental change; therefore, it supports late or
dynamic binding. Weaves are extended without disturbing the behavior of the tool fragments in
place.

Data Granularity and Type being transferred. Weaves support medium grain data. Each
individual stream datum is an object with encapsulated state, class membership, inheritance and
exported methods.

Process Granularity. It supports procedure level granularity.

Multilingual Support. It supports C++ and other languages which interface with C++.

Data Translation. In Weaves, ports implement the wrapping and unwrapping of data objects
by means of envelopes which hide the type of underlying data object. A specialized port can be
used to mediate communication between multi-lingual tool fragments.

1/0 Synchronization. It supports asynchronous communication.

Triggering. It does not support triggering.

Threads. Multi-threaded; implemented as C++ layering over Sun Light Weight Process Library.
Distribution. It does not support distribution.

Component Interface Specification. It does not provide a language for interface specification.

19




Registration. It supports dynamic weaving; the weaves can be dynamically rearranged without
disturbing the flow of the objects. New tool fragments can be added without concern for detail of
interconnection or integration.

Platform Dependencies. Sun3, InterViews, Xwindows.

Major Weaknesses. A missing capability is an Interface Description Language which hides the
low-level aspects of communication and describes the imported and exported functions and data
types of the real services and clients.

4 Conclusions.

In this document we presented the SBUS framework, a framework for the understanding and
comparison of systems considered as SEE software buses; it includes an initial set of attributes
and characteristics. We have also performed an incomplete survey of a few of such systems and
characterized them based on the available documentation. (It is worth noting, though, that we
have listed a superset of the papers used in this document, since some of these papers were received
recently and therefore not incorporated).

This document is just the beginning of an investigation towards understanding the complex
issue of componentization and interconnectivity of heterogeneous components. Much more work
lies ahead of us before we can fully understand when and how those components should be inter-
connected. Other candidate systems mentioned in literature but not addressed here are: DCE,
Ole2, SCORPION, CORBA, ToolTalk, Matchmaker/MIG, Mercury, Isis, SLI, Abe, Conic, Durra,
Infuse, HPC/HRPC (Heterogeneous remote procedure call), Mercury, MLP (mixed language pro-
gramming). We plan to investigate those systems and characterize them using the SBUS framework.

5 Acknowledgement.

This work was supported by the Advanced Research Projects Agency, ARPA Order No. 7314,
issued by the Space and Naval Warfare Systems Command under contract #N00039-91-C-0151.




References

[AD*92]

[AH]

[BFM]

[BTJI8Y]

[Cag89a]

[Cag89b]

[Cag90]

[CH90]

[CWP92]

[Dav89]

[ESF90]

[FNBG91]

[Fou90]
[GT90]

R. Adomeit, W. Deiters, et al. K/2R: A Kernel for the ESF Software Factory Support
Environment. In 2nd International Conference on Systems Integration 92, Morristown,
NJ, June 1992.

R. Adomeit and B. Holtkamp. ESF Factory Support Environment: Architectural Re-
finements and Alternatives. Technical report, University of Dortmund.

T. Bingen, R. Foulkes, and L. Morgan. Data and Control Integration in a Software
Factory: in Software Bus. Technical report, Sema Group - Brussels, Glasgow, Paris.

Jr. B. T. Jenings. The HP SoftBench Message Model: Concepts and Conventions Used
by the HP SoftBench Tools. SoftBench Technical Note Series SESD-89-21 Revision 1.2,
Hewlett-Packard, Software Engineering Systems Division, 3404 E. Harmony Road, Fort
Collins, Colorado 80525, September 1989.

M. Cagan. An Encapsulator Tutorial. SoftBench Technical Note Series SESD-89-15 Re-
vision 1.1, Hewlett-Packard, Software Engineering Systems Division, 3404 E. Harmony
Road, Fort Collins, Colorado 80525, August 1989.

M. Cagan. The McCabe Encapsulation. SoftBench Technical Note Series SESD-89-18
Revision 1.0, Hewlett-Packard, Software Engineering Systems Division, 3404 E. Har-
mony Road, Fort Collins, Colorado 80525, August 1989.

M. Cagan. The HP SoftBench Environment: An Architecture for a New Generation of
Software Tools. Hewlett-Packard Journal, June 1990.

Purtilo C. Hofmeister, J. Atlee. Writing Distributed Programs in Polylith. University
of Maryland, November 1990.

C. Chen, E. L. White, and J. M. Purtilo. A Packager for Multicast Software in Dis-
tributed Systems. Technical report, University of Maryland, 1992.

H. Davidson. Encapsulator: The Plug-In Compatibility Tool for SoftBench. SoftBench
Technical Note Series SESD-89-11 Revision 1.1, Hewlett-Packard, Software Engineering
Systems Division, 3404 E. Harmony Road, Fort Collins, Colorado 80525, June 1989.

Software Bus - Rationale. Technical report, ESF - SwB Sub-Project, June 1990.

R. Foulkes, O. Nanlot, T. Bingen, and C. Ginn. The Software Bus - An Overview.
Technical report, Sema Group Belgium, September 5, 1991 1991.

R. Foulkes. The ESF Software Bus. Technical report, Yard Ltd., UK - Glasgow, 1990.

D. Garlan and E. Ilias. Low-cost, Adaptable Tool Integration Policies, for Integrated
Environments. In 4th ACM SIGSOFT Symposium on Software Development Environ-
ments, Irvine, CA, December 1990.




[GRO1]

[Heié2]

[Hol92a]
[Hol92b]
[HS91]

[KPS93]
[Kra89]

[M*93]
[May92]

[MH91]
- [MH*92]

[Mor92]
[Mor93a)
[Mor93b]

[PSWO1]

M. Gorlick and R. Razouk. Using Weaves for Software Construction and Analysis. In
13th International Conference on Software Engineering, Austin, Texas, May 1991.

D. H. Heimbigner. ARPC: An Augmented Remote Procedure Call System. Technical
Report CU-Arcadia-100-92, Department of Computer Science, University of Colorado,
October 19 1992.

B. Holtkamp. MUSE - A Framework for Decentralized Software Development Environ-
ments. Technical report, University of Dortmund, 1992.

B. Holtkamp. MUSE Interoperation Support. Technical report, Fraunhofer Institue for
Software and Systems Technology, 1992.

B. Holtkamp and F. Schuelke. The Software Bus - Communication Aspects. Technical
report, University of Dortmund, March 18 1991.

A. Karrer, M. H. Penedo, and C. Shu. A Survey of Software Engineering Environ-
ment Architecture Approaches. Technical Report Arcadia-TRW-93-007, TRW, Redondo
Beach, CA, 1990, November 1993.

S. A. Kramer. SoftBench DM Message Integration Requirements. SoftBench Technical
Note Series SESD-89-20 Revision 1.2, Hewlett-Packard, Software Engineering Systems
Division, 3404 E. Harmony Road, Fort Collins, Colorado 80525, August 1989.

L. Morgan et al. The Software Bus - SADL Reference Manual. Sema Group Belgium,
BAeSema, swb/doc/sadiref/version1.3 edition, January 1993.

M. J. Maybee. Q: A Multi-lingual Interprocess Communications System - Reference
Manual, February 1992.

B. Holtkamp Mm. Hallmann. STDL: A Definition Language for Semantic Transactions.
Technical Report NIST Special Publication 500-201 and ECMA /TC33 Technical Report
TR/55, 2nd Edition, NIST, December 1991.

M. J. Maybee, D. H. Heimbigner, et al. Q: A Multi-lingual Interprocess Communications
System for Software environment Implementation. Technical report, Department of
Computer Science, University of Colorado, 1992. :

L. Morgan. The Software Bus - User Requirements. Sema Group Belgium, 4.2 edition,
September 1992.

L. Morgan. The Software Bus - Reference Manual. Sema Group Belgium, 4.0 edition,
March 1993.

L. Morgan. The Software Bus - User’s Guide. Sema Group Belgium, 4.0 edition, March
1993.

J. M. Purtilo, R. T. Snodgrass, and A. L. Wolf. Software Bus Organization: Reference
Model and Comparison of Two Existing Systems. Technical Report Technical Note No.
8, DARPA Module Interconnection Formalism Working Group, November 1991.

22




[Pur90]  J. M. Purtilo. The Polylith Software Bus. Technical Report 2469, University of Mary-
land, 1990.

[Sch91]  F. Schuelke. The MUSE System. Technical report, Eureka Software Factory, April 25
1991.

[Uni91]  UniDo. Kernel/2 Definition - Draft Version. Technical report, ESF, 1991.

[VEH91] J. Veijalainen, F. Eliassen, and B. Holtkamp. The S-transaction Model. Morgan Kauf-
mann, July 12 1991.

A Software Bus Survey Highlights.

See attached




‘fiuawdel) ooy
Suowe uopnesTUNWWOD
aziuoiyosuls

pue J3Jjng ‘wmy

ut ‘sananb oyy ‘sonanb
0} payoene suzod eia
J3youe o) juswdesy 100)
U0 wolj papfsuLn
ate nafq  -®elqo
8uissed £q 9jwolunwwIOd
10y} siuaw ey jool
Sunnosxa Apusumnouod
JO YI0MIIU ® 250 SIARIM

3sanbas 2y ssao0ud 0y
wisjusydaw  uohestjliou
paseq jeudis ® y3nomp
pausxeme st 3 [nun
2ANIORUl SUIRWAL IJAIIS
ayj, ‘oendosdde

J1 Bussasoid anunuod
ues uId Y, -ssadoid
194195 o) 0) 28essow
¢ 3uipuss £q 1sanbas
ad1A9s v sansst WD

‘Ul aWod s)sanbal
231A198 se suoljaesuen
2j0was pue [eso] djeniul
01 Iapuey 21y Joj

uoljewsojuy  Klessadou
oYyl suieuod 3|
*A1011s0odas  uondesuen

-§ a1 ut palols

pue oult} uonejjeisul
{00} e pauljap

st (1Q.Ls) 23endue|
uoniuijap uondesuel]
-§ up poyioads

‘suepd uvonnoaxy  ASAW
Jo su1dus uonnsax3 Y
st I1ajpuey/aaraidiaiul
uoljoesuel)-§ YL

‘3D1A10S

sutes 3y Juniodun
jusuodwod usi>

15| 21 o] afqejieas

3t saxew pue jood 15xyon
.8,101e007],, [E20] 2Y)

ul 19%oN © s3I SIGL
‘tied Quodxza gMS uim
gms o) Yim 2ouasaid
s) sioisi8or 1moAs v

*3]00) U2IMIDQ
ssed safessowr usym
puUR  MOY SIUNLINIP

jeiy uondilossp
Kotjod uonesoau; ue
s)nsuod Jaalas ofussow
AN ‘S[00] UIMISQ
sadessen  Sunnos
Lidwits ueyy Jayea

nq ‘SWE 0) Jejruls

‘|eudys

3o adky yoes ur 1:910u8
ue passaidxs 2daey ey
sj001 ||t 01 sadvssow
asoy) $isvIPROIQII
19A19§ SINE UL ‘P9ARS
SWE 21 0 sadessawt
puss s[00} USYM wWIsLs
) uy Jnodo snuaag

10fjAeyag
awrjl-uny

‘0d spalqo

indino 51 21ym Jo
woJj swod $192f{qo Indug
SIl AIYM [[2) UED dATIM
€ ul [o0} ou - ,purlq,,

$1 uonesJUNUIOD)

‘juasedsues) uoljeoo]

‘19ad-03-193¢4

*$1311IM
pue siapear a(dninw
pue ‘ss93e WeIns

Odid ‘3utiagyng 2yuy
Yum mol ejep 3upoolq
-uou ‘ujesd-winipay

‘(sananb jo asn ayy
ydnoiyy) eiep pasteys ela

‘Juissasppe j1o1jdxy
*J3Al38 O UONEI0]
JO areme 1 UMD

*19A138/1Ud1]2
- 10 ‘Id0A1S
“hnw fustp-ninp

‘uonwItUNWIWIOD
wutod-01-jujog

*9oeji9jul  uoljesljdde ur
wou Inq JIW Ul payroads
uissasppe ondxg

aoejso)ul  uoneoyidde uy
jou inq (JIA) 28enduen
uol1dauuoaIAu]
JInpoN Ul patjroads
K1no11dxs  uoyieso’]

‘12Al23/1Ud][D

-y Judld
-ninw ‘1A9s-Nin
seanny

‘yonjeipawt [euonido Yim

3uissazppe yiondxyg
qualedsuel] uoneso]
*193d-031-109¢4

‘utod-o0)-jutogd

‘uolEa{UNILIUI0d

‘WeU 9D1AIIS JORIISQR
Aq 3uissaippe oyjdxy
“juasedsuesy uonesor]

*19A19S 10 JUSLD ® 2q
ues [y ul usuoduro) v
«(28) wa15/(DIN) WD

0} 192UU0D 0] SIYSIM It
394198 oYy K[edijpoads
ays Bupdjnuspr usqpd
ayr yum jutod-oy-jutod

'819A19933
JO 1aqunu puR UOHESO[
) Jo JIeMEUN 3| PBPUSS
‘3uissaippe  snowuouy

juaiedsurn  uoliws0]

‘19A198
nusipe-ninw ‘13a1s
“niow uatp-iin

Ay ssaso01d

12d 12a398 seoprosg
si8ujs  -ismopwoiq
A1D3[35  USAHP-IUIAY

‘SING o1 ®1A

*$19A12031
Jo Isquinu pue uon¥Io[
2y} JO SIvmeun 3} JIPUIS
‘8uissasppe  snowfucuy
jusredsues)  uopywaor]
*19A108/1U2110
=ninu ‘J9A138
spinw uatR-nin g
‘A(ue)  ss9201d

J9d 12A13g IsEOpROIY
a{8uig  "iseoprolq
9A1109]98  UIA|IP-1uUdAT

“SINE oW ®A

[PPo]N  uon

uonestunwWiod 191ipuy| ‘uoneslUnWWOd 32N uonedIUNWIWOD 19311 paiRIipawW  I2AIIS uoljesiunuIWoy) 153l(] | UohedUNWIWO) PARIPIN | uojesiunwiwo) pAaeipa | ~edjunuiwo )
“uswadueiivas onueudp
*SUsUILOIIAUD *SJUIWIUOIIAUD
pue  £it{1qeasasqo snosuadolaiay snoausdolaiay | ‘8uissasord suonousuen
snonunjuod ul uonNIIX3 u} uoynasxs | snowouocine jo sueswr £q
‘uoljvjudwInIIsul 10} syuauodwod 10) sjuauodiiod | JUSWUOIIAUS  PANQINSIP *sjuauoduwio)
uo sy siseydwyg aremijos (93endue| aremyjos (93enduey e ur sjusuodutos Aioyoe 2lemijos alowl ‘uotjoridul {00} I3A0
'9192[q0 -paxiul) 2s12A1P -paxIWl) ISIAAIP jo uoneiadoiajui | Jo 7 usamidq wsueysowr | satoljod jonuod pauljep

Sujssed £q 9jwojunwwod
ey syuawdesg jool

LR CHEETUTEYCI]
ayy sizoddns ey

JO  UO1122UU0IIIIUL
sy syoddns ey

oy} a8euew o
LI 303 sng S dSH

uoioeUl ue oplaoid

oL :1/M 10} sng M/S 453

Josn jroddns o3 owoyos
uohimidaiu; SWNE 20

*1380pROIq  2A[139]08
uo paseq uopeidauy

funnoaxa A[juaiinduod | w9shs UONHIAUUOIIAUL | WIIsA¥  UO[IOIULOIIUL sy jo uonwjuswajdug ay) jo uonejuswajdun popusIXy  ‘Yiomaurel) {001 "Yiomaweiy asodang
JO YIOMIIU ® 2I¥ SIAVIAL s1emijos v alemijos vy adf10j01d tp1easas y |eisnpuy uy uoniesdauy  josuo) uopjwidauy jonuo)d Kaswijdg
syl dlua)joy g ddEmyjoy SNy alumjjoy
KA WS N 0O o ASNIN ST/A 1/ 183104 SWH
MBI Adaaang  sng dauagjoy




"suoljoestiel)
-g se poururesdosd

‘Bur1addin
paseq-uoljipucs puwe

Jojeinsdesuy
o) yum 3128313 umo

‘pausoddns joN ‘pautoddns 10N ‘pousoddns 10N aq 3mu Suroddug, ‘pausoddns joN paseq-1usa2 sutoddng 112) SUYIP UvD $138() Supa283ga
‘snouoiyoudse uogfjez
paseq-jeudss *snouoIyoussy ‘snouoiyoulsy snouoiyoulsy snouosyoudsy| -juoagoudls
snouoIysuksy pue snouoiyoukg pue snouoloufs snouolyouls pue snouoIlyouks pue snouonyoufs pur snouoiyouks o/1
*Od¥NdX o doj uo
pajuswaidwy  asejiau}
uonesIUNWWIOd Yl Jo
wed s1e suely  maxoog | csited uopow-uonipuos sanbuumuwwio) gSVI
dan ‘drdoL dan Yydnouyy ssajaswayl uo paseq Juwyoyww &q poazipsepuvis Fuleq
‘sjaqd0§ uo spuadap o1 ‘Dd¥ ‘dI/dIL uPIMIaq IEIIUNWIUWIOD utayed adessapy | - 10001014 o0l oUnNIgY
osiy  (4ad) ¥ax pue ‘0ot'X Jo doy uo (waishs sioleso]  ‘sadid
(OduV) 24y payipow jo suonjestunwwo)-NnK) | poweu ySnony siojeso] *819%208 ‘8391208
doy uo pawuswspdun SO o} el siwsucdwo) | xiupy Bursn pajuswajdwy | xup Supsn payuawajdui] s{olojold
‘sjudwded)
joo1 jenBurj-yinw
Ud9M1aq WILIOD IeIpIwW
0} pasn aq ued> uod
pazijeidads v "1d3fqo *S1{NS24  pauinial
ejep Swifpaspun jo odfy| Kue sapoasp Aptoydxs
ayi apiy yotym sdopaaus pue 4y ue 3uinssi o) ‘suoneotjdde ‘uofssiwisues) I1313e
Jo sueawt £q sydafqo 1oud s3ie sy sapooud 0} juasedsuen aq ued pue a10j3q swuswndie
wiep jo Jutddesmun pue] Apoydxs usand O 24l snyp TIN oWl ®via pauysp Jo 3uiposap;3uiposus
guiddesm oy Juswaidun ‘uopjeajjdde 2q ues uole{suel) ‘uotjeaydde oyl suurojsad | sdnid,, uogfjBsues |

suod ‘saavap Ul sy 0y jwuasedsuen joN €ep jey) Sswads 0} juasedsuelrj, 194198 pue WD ‘yoddas oN “uoddas 100a1p  ON s1e(d
++D Yim
saepsaul jeyy sadenduey 3ojoid pue ‘dsri ‘g ‘3ojo1d ‘dsi] ‘jesseq ds11
0 pue ++) suoddng| ‘++D ‘epy ‘D suoddng ‘epy ‘++) ‘O suoddng -97 ‘4++D *D suoddng jdoddns
‘SaX 'S8 K ‘$a X ‘83X 2 suoddns £jug ‘oN 5 snoddns Kjup oNjrendujppiiingy
“$]3A3] ssacoxd ‘$[9Ad] ssadoid 1943] [2A9(] Ayjdejnusiy
pue ainpasord 1y | 2a3] ssadoid xwun IV pue ampasosd v | 100y Jo ssavoud xwp iy | [ooy 10 ssa00id xun IV §§32014g
"31e1isqns
uon2IUUCIIANUL
epy| Auw £q opqeiaidisjuiun
pue 4s|'g ‘++23 ‘o w :2df) mey )
‘sainidonng tadfy  Aujiqede) '
‘spoylow  paisodxa Pi0231 pue $40193A $33In10NJ)s  plodal

pue 2dsuviyayuy
rdiysiaquats

Suisn s3dfy sapund
jo uoneuiquiod

ptue si101994 3uisn sadfy
sannuuud jo uoneurquod

‘(sadf1 eiep pa1dnisuod
10 aanupad 19

ssg[a ‘aieis  paiensdesua uo paseq e uo paseq ole 0 S1QUWIDW dle SHUIWID paliajsuel]y
s 193{qo ue S| wnjep ey :sad£y ansoduto) yeyy :sadfy apsoduwro) asoym sainmppnns *9t1) dujag
sweans |enplalpul yoesy ‘ieo] puwv ‘jeo) pue paonlisuod  pue  (onuole adLy pus
L3ImaNyose  moyy |‘uesjooq ‘Suins ‘1283ur| ‘uesjooq ‘Buns ‘1a8ajuy ©271) eapnund  :sadKy s3uins  13)0vIRy) sSuins 1pueyd | LjjIe[nUuslH
-ejep ‘utesd wnipapy,, :sadfy  sanuItlg isadfy) sannunyg 'sadhy =miep D viep Jo satzodoied om] - muawndiv adessapy - sivawndiw odessapy L3R X
’ ‘suofjiuljap 9dAy 2wy Uil pue dpdwod

*3uipuiq uoljasuell-§ UM 12 paysijduiosse st auty

sieudp y3nouyy *1933p W3nu suoisiaa pautjop A((eoiweudp| uonewuswaopdury sy puv uopesisidar 1w Indd0

a3ueyd [euaWAIIUY Suipuiq| s TN Ul panads | aie susuodwiod usamieq suleu ad1AI9s OeEnsqe o) siwadde juwuodwods
snonupjuos  syioddng surn-uni  suoddng Kieaneys  3upurg sdiysuoyie(ai-133uy ue ‘mjaq Suipurg SWE 01 Fejruis 01 sweu jo 3upuig fawsyy  Buypujg

ssulayyed

013 ‘(uodygTgms Suins  1310wsvy> ‘syuswndie  puw

)0 Yad pus ‘syusuodulod {0uodug"qms payidads a1 mudswndiy | “xsjuos ‘sureu purunuod

‘adf) 901a33s ‘(uoisiaa usamiaq uonesadood isauynol  adelijuy ‘SN uey) 2oejiaul ‘sse]d puwwiod

‘Pl 1aalas ‘autyoews) ‘asejIa)ul  |jeO 3uifjroads 10 apo1Ysa sng oJemj)og pue aBussawl oyIoua3d ‘(oamiey Jo “1s9nbas

‘K1e1qi) 1920qo +4D ® ¥
paiuswa{dusy I $IARIM

194138 :s31)10ads
W) esejIul
118> 2Inpasold

2inpasoid osje suoddns
ing wdipesed 3uyssed
adessow  A[uewilyg

sy se paptacad st (IQD
s8endue] uonduosag
uoljerodosdiu] uy

suawaivlg adueyoxy
lonuoy  -adejiaul
11ea-21npasold

alouwt s} asepIul
(X1 JEEH ]
paseq-ofessapy

‘uopesynou) adfy Fsw
‘p1 isanboy  :sapnjouy
asejiaiut  paseq-adessapy

uogydiaasaqg
238jIajuU]

sog




*81U3{D

pus §301A138 [eas

a1 Jo s2df) ejep pus
suondun) paptodxs
pauodurt ay)y $2qrI9sIp
pue  UOHESIUNUMNLOD

.Jo spoadsu

12A3]-mO[ 24} TOPIY
wiym 1al ue sy Suissiy

SISEIUNBIMN
10w}y

yijauaiays
10fey

‘smopuimy
‘Smatp U] ‘gung

*04yNigx uns

1'g/smopur
-SW 1pun Dd

pue pung ‘fung ‘DYVdIS

§3]d
-uapuadag
ari10j]i1®id

(1o1e3uad qnis ) wHD

‘ssatdwon
ALD “1aVSs “1a4(S)

*19A13%
SINE WM uohedlumuILod
Joj saunnos A1wiqi] puw

s8endue] uopduossag
uoneinsdesuy sIplaolg

u_e.c.—.

jyusawmdojaaaq
sng d1BMIJOS

Sujuoysiap

Aitandas

Bujipuegy
uofidasxy

‘uonyeidaul

10 UO2aUU0IIUY

Jo [levp Joj

WwaIduod o/m pappe 9q
ued suawdes) joo) maN
‘spafqo ay) jo moy ay
Suiqimisip o/m paduene
-31 Keowteudp 2q

ued saAavam 2yl ‘Butaeam
snueudp suoddng

‘sjusuodwos
3unsixs jo adueyd
jou Inq muauodwod
MdU Jo uonippe
simeudp siyroddng

owny
aptdwod e paidsidal
aiv sjo0) Anuaieddy

uopyedysgday

‘(adenBue] uol)dlIdsIq
uonyvjuasaiday
uBs) 1a04¥s
‘(e3endue] uonduosaqg
1PENSqQY  901AISS)
1avs ‘(e%endue
uonduiosaq ady

sum-uns 1% susuoduros
U2aM)9q UOTIVId0SER
oydury  apyaozd

‘swpi-unt Je  nuauodrod
us23M13q  UONIEIJOSSR
jotdury  sptaoad

1Y) s3[qul  pautejuiew
SWA ‘s(ooy aejnsdesus

uojyedyjiaadg

33®jaayu]
juauodwo)n

. ‘ON UonI2UUOIINYU] J[NPOW ars | wsuodwod) JALD 'S 1Y) $I[qel  sulvuiR 01 143 jo I
-uonjedt|dde ‘uotjedtjdde {joniuo)
0} juatedsuen ‘uotjesidde ue 0) jusredsuen st ss2s01dqng 21emijos)
‘ON jou Inq ‘sax 0} jJuasedsuesy, ‘sof | 9o1atas jo uopeso] s OdS Wim pouoddng ‘x| uonInqraisia
[EXTETTETTY]
*£1019211p " Buipxiom
‘ssweuysoy) o1din
‘s1asn oyduniy ssosn sdnjnur sueds s1o8n o[dnnw  suedg £q paynuapl adosg adoog
*SI2AIJSF
3unesjunwuwios 3anoe
‘f1e1ql7 §820014 1Y31om Anuasnouod j1oddns “(dMT) s9ssan0id
WAy ung 1240 Fupakeq o} paudisaq  ‘epv wdem it souns
++D) se pajuswaidury 10) papelIyI-nInQ et ‘aimesj [euondo
tpapeasi-nInN | "D Joj popeasyy a(duis papeasyy 9j3ulg ue s1 Juipeanp-ninpy 'papeasyy 213uls ‘papranp) 21duig spealy L




Draft Interoperability Working Group Comparison Matrix
D. Heimbigner
December 1994

Provider(s):

Contact Information:
Availability:

Cost:

Platforms (Hdw &/or OS):
Software dependencies:
Version:

Source of Comparison:

Technical Features

Component Coupling Model:

what model of distributed computation is supported?

Two kinds are currently distinguished:

Autonomous: services are defined and instantiated

independent of any particular client.
Note that this implies that binding of
client to server is late binding.

Tightly integrated:"services and clients are
. defined as components within
a larger distributed computation.

Communication paradigms:
What styles of communication are supported between clients and
servers?
RPC - remote Erocedure call, possibly with futures,
in which a reply is expected for each request.
Messages - messages are sent from client to server, but with
no necessary expectation of a matching response.
Broadcast - messages are broadcast with no necessary
destination server.

Standards Adherence:
To what standards does this system adhere?

Multi-Protocol:
Can this system communicate using more than one protocol?
Note that this is not intended to refer to the lowest
level protocols such as TCP/IP or UDP. It is assumed
that all of these systems use (at least) TPC/IP.

Interface Compiler: ,
Is there a compiler to take an interface specification
and generate client stubs and/or server skeletons.

Languages Supported:
In which languages can clients and servers be written?
Note that this does not imply general multi-language support.

Multi-Language Support:
Can clients and/or servers written in arbitrary languages?
Additionally, can clients and servers written in different




languages be intermixed?

Dynamic Interfaces:
Is it possible for a client to construct and invoke a request
dynamically? Is it possible for a server to receive
a request for which it does not have an explicit interface
method defined?

Location Transparency:
Is the location of the machine
on which an object resides hidden from a client?

Object granularity:

Can an object transparently be both local within
an address space as well running

as a server in a separate address space?

The alternative is to require clients to be aware
that an object is non-local.

First Class Contained objects:

For objects contained within other objects,

is it possible to access the contained objects

using the same mechanisms as for non-contained objects?

Orthogonality:

Is it possible to servers and clients to address spaces
(i.e. Operating system processes) in arbitrary combinations?

Combined Client+Server:
Can a server also be a client to other servers?

Fault-Tolerance:
To what degree can a client and/or a server recover
from failures by other components? The set of possibilities
are: (1) loss of connection, (2) non-transparent server
replacement, (3) transparent server replacement.
Obviously this set does not do justice to the extensive
capabilities of a system such as ISIS, which has focused
specifically on this issue.

Exceptions:
Does the communication protocol allow for propagating
some form of exception from server back to client
as part of a response to a request?

Authorization Control:
Is it possible to provide authentication information
with requests?

Request Priorities:
Is it possible to prioritize requests to a server, as opposed
to strictly FCFS?

Receipt Acknowledgement:
Is it possible for a server to tell a client that its
request was received and then later provide the actual reply?
Note that this is usually only useful for unreliable
protocols such as UDP.

Futures:

Does the client side require use of the synchronous procedure
call abstraction, or can a client use some form of

futures mechanism to continue after starting

a call and later receive the reply?

Threadable:




Is it possible to use this system in a multi-threaded
executable?

Non-blocking substrate:

Is support for threading separable from the functionality

of client-side procedure invocation and also

from the functionality of server-side method invocation?

This is necessary in order to embed the system

into languages with non-standard threading mechanisms (e.g., Ada).

Separate Marshaling:

Is it possible to marshal arguments to a remote procedure
separately from the process of invoking the procedure?
This feature is necessary to support languages

without callback.

Versioning: ‘
Is it possible to support versions of the same object
or interface?

Registration:
Is registration of an ob{ect/interface.done statically
)

(i.e., by a separate too or dynamically at runtime
by the object itself?

1. Note that I am separating out two related groups
of systems: 1) The tightly integrated systems such as Polylith, PVM,
and Mentat, and 2) the broadcast message bus systems such as ToolTalk,
Field, and FUSE. 1In both cases, this segregation is deliberate
since I believe that they should be the topic of separate
discussions. Especially note that I recognize that there
are distinctions within such groups. Thus, ToolTalk and Field
have many characteristics which differentiate them from each other.
Also, for example, Polylith and PVM support different binding models.
Never the less, for the purposes of this matrix, I treat them
as part of a single aggregate group. The matrix includes
a line for each group and is there as a placeholder for the group.

2. This matrix is intentially not exhaustive.
All of the systems described here, except for the aggregate
entries, may share many features not listed in the matrix.
The entries in the matrix were chosen mostly to illustrate
differentiators between the systems,
or to hi-light features thought to be
most important (even if they were shared by all systems).
The interface compiler is an example of the latter. All
of the listed sgstems have some form of interface compiler,
but it is considered such an essential feature that it is
included explicitly in the matrix.
The supported type systems for remote procedure
arguments are mostly identical, and so are an example
of a common assumption currently left out of the matrix.




SYSTEM COMPARISONS

Provider(s): University of Colorado

Contact Information:
http://www.cs.colorado.edu/homes/arcadia/public_html/qg.html

Availability: Public

Cost: Free

Platforms (Hdw &/or 0S):
Solarisl, Solaris2, AIX, ULTRIX, OSF/1, HPUX, IRIX

Software dependencies: ARPC.

Version: 3.2

Source of Comparison: Local Expertise

Component Coupling Model: Autonomous
Communication paradigms: RPC

Standards Adherence: SUN ONC
Multi-Protocol: No

Interface Compiler: Yes (C and Ada)
Languages Supported: C, C++, Ada, Prolog (obsolete), Lisp (Obsolete)
Multi-Language Support: Yes

Dynamic Interfaces: Client-side, Server-side
Location Transparency: Yes

Object Granularity: Non-local

First Class Contained objects: No
Orthogonality: Yes

Combined Client+Server: Yes
Fault-Tolerance: Connection Loss Detection
Exceptions: Yes

Authorization Control: Yes

Request Priorities: Yes

Receipt Acknowledgement: Yes

Futures: Yes

Threadable: Yes

Non-blocking substrate: Yes

Separate Marshaling: Yes

Versioning: Yes

Registration: Dynamic

Provider(s): Xerox Parc
Contact Information:
ftp://parcftp.garc.xerox.com/pub/ilu/misc/janssen.html
Availability: Public
Cost: Free ' '
~Platforms (Hdw &/or 0S): Solarisl, Solaris2, IRIX
Software dependencies: None
Version: 1.6.4
Source of Comparison: 1.6.4 Reference Manual

Component Coupling Model: Autonomous

Communication paradigms: RPC

Standards Adherence: SUN ONC, Courier, CORBA 1.2 (Partial)
Multi-Protocol: Yes

Interface Compiler: Yes .

Languages Supported: C, C++, Modula-3, CLisp




Multi-Language Support: No

Dynamic Interfaces: No

Location Transparency: Protocol dependent
Object Granularity: Non-local

First Class Contained objects: No
Orthogonality: Unknown

Combined Client+Server: Yes
Fault-Tolerance: Connection Loss Detection
Exceptions: Yes :
Authorization Control: Yes

Request Priorities: No

Receipt Acknowledgement: No

Futures: Yes

Threadable: Yes

Non-blocking substrate: No

Separate Marshaling: No

Versioning: Yes

Registration: Dynamic

Provider(s): Orbeline
Contact Information: PostModern Computing Technologies, Inc.;
phone (415) 967-6169
Availability: licensed
Cost: Unknown
Platforms (Hdw &/or 0S): Solarisl, Solaris2, OSF/1
Software dependencies: None
Version: ?
Source of Comparison: .
Orbeline Reference Manual and Users Guide, 1994.

Component Coupling Model: Autonomous

Communication paradigms: RPC

Standards Adherence: CORBA 1.2

Multi-Protocol: No

Interface Compiler: Yes

Languages Supported: C, C++

Multi-Language Support: No

Dynamic Interfaces: Client-side

Location Transparency: Yes

Object Granularity: Local, Non-local

First Class Contained objects: No

Orthogonality: Yes

Combined Client+Server: Yes

Fault-Tolerance: Connection Loss Detection, Non-Transparent
Server Replacement

Exceptions: Yes

Authorization Control: Yes

Request Priorities: No

Receipt Acknowledgement: No

Futures: No

Threadable: Yes

Non-blocking substrate: No

Separate Marshaling: No

Versioning: No

Registration: Dynamic




Provider(s): Iona

Contact Information: http://www.inona.ie

Availability: licensed

Cost: $5000

Platforms (Hdw &/or 0S): Solarisl, Solaris2, NT, HPUX, IRIX
Software dependencies: None :
Version: 1.2

Source of Comparison: ?

Component Coupling Model: Autonomous
Communication paradigms: RPC
Standards Adherence: CORBA 1.2
Multi-Protocol: No

Interface Compiler: Yes

Languages Supported: C, C++
Multi-Language Support: No

Dynamic Interfaces: Client-side
Location Transparency: Yes

Object Granularity: Local, Non-local
First Class Contained objects: No
Orthogonality: Yes

Combined Client+Server: Yes
Fault-Tolerance: Connection Loss Detection
Exceptions: Yes

Authorization Control: Yes

Request Priorities: No

Receipt Acknowledgement: No

Futures: No

Threadable: Yes

Non-blocking substrate: No

Separate Marshaling: No

Versioning: No

Registration: Dynamic

Provider(s): OSF and various vendors
Contact Information: ?
Availability: Licensed
Cost: Vendor Specific
Platforms (Hdw &/or 0S): Solarisl, Solaris2, AIX, ULTRIX, OSF/1,
HPUX, IRIX, NT
Software dependencies: None
Version: 1.1
Source of Comparison: OSF DCE Application Development Guide, Revision 1.0

Component Coupling Model: Autonomous
Communication paradigms: RPC
Standards Adherence: DCE
Multi-Protocol: No ’

Interface Compiler: Yes

Languages Supported: C, C++
Multi-Language Support: No

Dynamic Interfaces: No

Location Transparency: Yes

Object Granularity: Non-local

First Class Contained objects: No
Orthogonality: Yes

Combined Client+Server: Yes
Fault-Tolerance: Connection Loss Detection
Exceptions: Yes




Authorization Control: Yes
Request Priorities: No
Receipt Acknowledgement: No
Futures: Yes

Threadable: Yes
Non-blocking substrate: No
Separate Marshaling: No
Versioning: Yes
Registration: Dynamic

Provider(s): Microsoft

Contact Information: Microsoft

Availability: Bundled with Windows

Cost: N.A. _

Platforms (Hdw &/or 0S): Windows 3.1, Windows 95.

Software dependencies: None

Version: 2.1

Source of Comparison: OLE 2 Programmer’s Reference, Volumes 1 and 2

Component Coupling Model: Autonomous
Communication paradigms: RPC
Standards Adherence: OLE2, DCE? .
Multi-Protocol: No

Interface Compiler: Yes
Languages Supported: C, C++
Multi-Language Support: No
Dynamic Interfaces: Yes
Location Transparency: Yes
Object Granularity: Local

First Class Contained objects: Yes
Orthogonality: Unknown

Combined Client+Server: Unknown
Fault-Tolerance: Unknown
Exceptions: Yes

Authorization Control: Yes
Request Priorities: No

Receipt Acknowledgement: No
Futures: No

Threadable: Unknown
Non-blocking substrate: No
Separate Marshaling: No
Versioning: No

Registration: Static

Provider(s): CLI

Contact Information: ftp://cil.org

Availability: Licensed

Cost: Unknown

Platforms (Hdw &/or 0S): Macintosh

Software dependencies: None

Version: ? :

Source of Comparison: SOMobjects Developer Toolkit Technical
Overview, version 2.0, November 1993.

Component Coupling Model: Autonomous
Communication paradigms: RPC

Standards Adherence: OpenDoc, CORBA 1.2
Multi-Protocol: No

Interface Compiler: Yes

Languages Supported: C, C++




Multi-Language Support: No

Dynamic Interfaces: Client-side
Location Transparency: Yes

Object Granularity: Local, Non-local
First Class Contained objects: Unknown
Orthogonality: Unknown

Combined Client+Server: Unknown
Fault-Tolerance: Unknown

Exceptions: Yes

Authorization Control: Yes

Request Priorities: No

Receipt Acknowledgement: No

Futures: Unknown

Threadable: Unknown

Non-blocking substrate: No

Separate Marshaling: No

Versioning: Yes

Registration: Dynamic

Provider(s): Isis Distributed Systems Inc.

Contact Information: Isis Distributed Systems Inc.; phone: 607-272-6327
Availability: licenced

Cost: Unknown

Platforms (Hdw &/or 0S): Solarisl, Solaris2

Software dependencies: None

Version: 3.0

Source of Comparison: Isis Version 3.0 Reference Manual

Component Coupling Model: Autonomous

Communication paradigms: RPC

Standards Adherence: None

Multi-Protocol: No

Interface Compiler: No

Languages Supported: C, C++, Fortran, Lisp

Multi-Language Support: No

Dynamic Interfaces: Unknown

Location Transparency: Yes

Object Granularity: Non-local

First Class Contained objects: No

Orthogonality: Yes

Combined Client+Server: Yes _

Fault-Tolerance: Connection Loss Detection, Transparent
Server Replacement

Exceptions: Yes

Authorization Control: No

Request Priorities: No

Receipt. Acknowledgement: No

Futures: Yes

Threadable: Yes

Non-blocking substrate: No

Separate Marshaling: Yes

Versioning: No

Registration: Dynamic

Provider(s): University of Maryland
Contact Information: purtilo@cs.umass.edu




Availability: Public

Cost: free

Platforms (Hdw &/or 0OS): Solarisl

Software dependencies: None

Version: 2.1

Source of Comparison: Polylith 2.1 Distribution Documentation

Component Coupling Model: Tightly Integrated
Communication paradigms: RPC, Message -
Standards Adherence: None
Multi-Protocol: No

Interface Compiler: Yes

Languages Supported: C, C++, Ada
Multi-Language Support: No

Dynamic Interfaces: No

Location Transparency: Yes

Object Granularity: Non-local

First Class Contained objects: No
Orthogonality: No

Combined Client+Server: Yes
Fault-Tolerance: Connection Loss Detection
Exceptions: No

Authorization Control: No

Request Priorities: No

Receipt Acknowledgement: No

Futures: Yes

Threadable: No

Non-blocking substrate: No

Separate Marshaling: No

Versioning: No

Registration: static

Provider(s): Sun

Contact Information: SunSoft

Availability: licensed

Cost: Unknown :

Platforms (Hdw &/or 0OS): Solarisl, Solaris2, HPUX.
Software dependencies: None

Version: 1.1.1

Source of Comparison: The ToolTalk Service, from SunSoft.

Component Coupling Model: Autonomous

Communication paradigms: Broadcast

Standards Adherence: Tooltalk

Multi-Protocol: No :

Interface Compiler: N.A.

Languages Supported: C, C++

Multi-Language Support: Yes

Dynamic Interfaces: Yes

Location Transparency: Yes

Object Granularity: N.A.

First Class Contained objects: N.A.

Orthogonality: Yes

Combined Client+Server: Yes

Fault-Tolerance: Connection Loss Detection, Transparent
Server Replacement

Exceptions: No

Authorization Control: No

Request Priorities: Yes

Receipt Acknowledgement: No

Futures: N.A.

Threadable: Yes

Non-blocking substrate: No




Separate Marshaling: No
Versioning: Yes
Registration: Dynamic




(I4S) IUOOUOIN BN
(OSN) zumoloH si||3
(13S) neujiepy Uny
(IIng) plouly uyor
(MY L) opsusad 0|07
(ND) dreyn ‘JeubiquisH siuue

suedionied dnolr) BuIOpn

¥66 1 Jequieides £2-02
‘O ‘sIno7 1S
Bunes|y sjuswuolinug O1SIS/VAHY

dnoin Bunjiom
Aigesadoaalul




"ojeiadotalul Jouued sjusuodwio) <«
. "IX81U090
Bunesedo Jisy) 1noge suondwinsse s|qiedwosu) axew us)o sjusuodwon o©
:sjeob s, awoisnd ayj BuiAsiyoe 0} Jsllieg e
‘s100loid ob.ie| yoddns 01 9)qe/EOS
‘sa160jouyoe)] Juswuodinue Buibiswa yum aded desy 018/genjory ¢
~ "spesu olloads-uoIssiw 0} 8jgeiojie g
‘sjusuodwod S10H/S10D/SLOD buisn pejquiesse Ajpidey  *|
SI Jey} auo 0} Juswuodiaud Bujwwesboid ‘pasolo “YINg-WOoIsnO B WOy SAOW ©

:SJUSWIUOJIAUS 9JeM}0S 10} S|eob s Jawolisnd .

N37904dd ONILVAILON




‘(Juswabeuew 1098lgo ‘sseooid “*6-9) sdnoib Buppom oyioads Jo snand 8yl si SIyl —
"SQoBJI8IUI [00] 10 SO0} O1j109dg ©

"SWI9ISAS [BI0JaWIWOD
ypm Apoauip ejedwod 1ey) swisiueyoaw Ayjiqesadoisiul mau Jo Juswdojpasg ©

:501d0} 8d02S-J0-INQ
‘swis|iueyosW Bulisixa 0} Juswsdueyug o
'surewop oij10ads o1 bupiojie] o
"swisiueyosw Aljigesadolsiul Jo uoijenjens o
:801d01 ©d02S-U|

3d00S




-AJIUNWWOD SJUSWUOIIAUS 84eMYyos ay} ojul ABojouyosy Aljige
-1adoisyul [eseusb jo uononposul paediound 8y} 40} INPUOD B SB SAISS

ADILVHLIS/SIAILOANrd0 NYHOOHd
Ol dIHSNOILV13dd




“surewop di1oads 0} suswuoiaud Bunojel ul Aynoyiq
"a|qissodwl Us1o S JUBWUOIIAUS BU} 40 sod8id JO uolesul [elusulaiou] ©
‘ul-Anqg Buiyiou-1o-||e aiinbaJ sjusWuUoIIAUTg

"s1owwelboid jenpiaipul 18bie) AjjeoidAy sjool gSYD <
‘JoxJew (00} 38y ul subled Ajjelusw Od,, @yl ©

"$81N108}1YdJe. JO Aujge|eos

-90B}I8JUI Jasn J1ay] ybnouy) pesseooe aq Ajuo ued s|oo) Auepy ©
"9]BeuIpJogns 89 1snuw Sjo0}
1aylo __m pue ab4eyo ul si )i syuIy} j0o} A1an] :wejqoud ,,;8bieyo uis,oym, syl ©

*5100] Bunsixs Jo Ajjeuoidun; syl suiquiod o} Ajljigeu)

(¢HO}e 43| YOSOUOIN+|L Pue) ‘J1Dd ‘FTDAD-AQY :sojdwexs ainjieq ©
-obejuBApE }9)JeW JO SSO| :Uoseay ©

*5|00) J18y] Buiuado 0} Juelsisal uaAoid aABY SIOPUSA |00} ISYO

d33N 40 3O0N4dIAd




(310 "6°8) swsiueyosaw Jaylo sapn|oul Ajjeousushb ygyOD wisl 8y BI0N —

swisjue
~yosw Aljiqeiedosayul

loj Ayljeuonouny pue
souewiopad panoidwy -

%Sl [eoIUyo8} paonp
—a1 pue swsiueyosw
1O UoNoBlas pawloju| —

selousioiap palenco
—SIp ©Aj0S84 0} SUOIS
—uajxa Jo sedAjojoid -

elep yew
-youeq piepue)s Jo asn
pue AjjigejieAe jeiousy) —

oousadxe
[enmul Aq pajeanal
saloUajolep jeuoiound ~

sple
—puejs yrewyousq adA}
—ojo.d jo uswdojansq -

Aygeiedolsiul gHO
01 gHO Jo salnseaw!
soueuLIouad coy-py -

VEHOD o saousolep
[BuoOUN) [2BA81 O}

sousuadxe JuslyNsU| —

sylewyouaq piepuels
ou Inqg ‘ejgelene
sainseaw ndybnoay | -

pJepuels se

va4y0o o @sn Joy ysnd
UaALIp feulnop—epely —

(a/qeyienb/e|gejiuenb)
s)deouoo enoge jsuebe
pajenjeAs aqg isnw
swisiueyoaw Bupsixgy

suopeoldde

. 8Ajjeloge|j02

o|qe|leAe Ajopim
‘eouewopad-ybiH -

sosssao0id
snowouo}ne Jo
suopeuiqwo a|qixald —

sjueuocdwioo sseooid
1o} aoe|dioyiep —

seulBue ssao0.d
usemieq Alljiqese
~doseul pajediound -

vYdHOD 0} suolsuslxe
BlpsWw—jnw ‘swi—-jesy ~

says ajdijnw je
sauiBue sseo0id jo uon
—eJladolsiul adAjolold -

suoleo||dde
dAlleloqe]|od JNOdIN+
vaHOD adhiojoid —

saubus

ssao0.d Jo Alljige

—Jadosyul Jo sejdwexs
ooy-pe ‘ssiedg -

elpaw

~Hnw Jo} (INOGW)
swslueyoaw aeledssg -

sedAjojo.d

Yoleesal ul seyoeoidde
: paseq-jusA] —

suonnjos

wiod ‘Bupeiedoisiul
—uou ‘oyjoads—Iopusp ~

§S900ld
pue uonieloge|on se
yons sjuawalinbel Jusw
—UOJIAUD BJEM}JOS MBU
10} [epuessa s| Alliq
—gJladoisiul Juauodwion

, SiOpuaA
weuocdwoo Aued piiy
WO} S)UBLLUOIIAUS

jo Alquesse ,pidey,, -

sjuauodwioo Justuo
—JIAuS Joy aoejdiexuei —

(++ygy00) sebirews
vg4 00 0} losseoong ~

siuauodwoo paseq

vaHoo jo Alliqe
—{tene pealds—epIp —-

uonisodwod paseq
ainjos}iyose 1oy uojele
-uab enib,, perewoine

(1wss) jJo sedAioioid —
soINjo8}Iyole Jusw
—UoJIAUS PIEPUE]S,, JO

suopejussaldal 1ay -
a<mmoov

SgHO s|qeladoisiy] -
sjusuod

-Woo peseq-ygaHOD
10 Ayjceliene paywir] ~

llems—punoib yadoo -
Jodwiyuodxs a4 -

(9HEX)
uoneifeiu) |oAS|—jUBA] —

SUOIN[E0D IOPUBA —

sjoalqo uelb-ebie)
Buneledoisiu] Jo sUONOB)
—|00 8Je SjusWuoiAUTg

SOIH1INW/LOVdNI

SHVIA v+

SHV3AC +

AVAol

SLSNHHL AIM

SAN44dl

*




‘so1bojouyoal Buinsixa ul seld
-usI01}ep PaJsA0dSIp Ssalppe 0] suolinjos adAjoloid dojensp ‘popesu SY

‘Abojou
-yos) Ayjigesadodeiul Bunosies ul aouepinb apinoid pue eLBIIO sulle(

-AUNWWOD SIUSWUOIIAUS 8} JO Sjuswalinbal ayy 0} 10edsel
UM SUOIB)NWI| JI9Y] SuILLIS}ap 0} spJepuke)s Jolew Bunsixe sy} 81enen

-ABojouyoa) Buisixs Jo uoiienjeas pue uondwnsuod ay}
0} ABojouyos} Ayjigesadossiul jo uononposd woly Agunwwod sy} SAON

S3AILO3rdoO




S80S JUBAT YEHOD PUE 9HEX OU) peousnjul sey pleld ‘Aluepuooeg o

sieonpoid aremyos Jofew |je Ag Ajjerosowwod pesn dn payold useq sey piald ©

~UOJIAUS 8JEM}JOS WOISND ‘paso|o wouy Buiaow uj dajs 1s41y o) papiroid pial4 ©

B P2JOpISU0D 8q }SNW Wa)sAs obessow 1SeOpeo.q p|old S,SSI9Y 9A8IS

spJepuels

(- 3ql)
3SVD

lsjsuel] "yoo]

yolessey

S90INBS
9HEX JUaAT YaHOD

~_

_ Aeliool  youegyos  3sSNd
ung dH o3da

é

(sebessow JusAs }SBIPEO.I])
- P4

!

3QS P8sO0 ‘YINg-WoIsny

"SpJepuels

*SIOPUSA JSYD pue

"SJUBWIUOJIAUS 8|geJo|ie] ‘uado 0] sjusw

- AIUNWIWOD SIY} 4O N0 BuUIWOo SS89NS Jofew

S1ININHSITdINODIV




-ABojouyos) Bunesw aaneloge||0o woddns 01 “dio) ||ng 01 Jejsuel) yoa| ©
DA\ + J8p|ing UOIIBSIBAUOD .

09f04d MOLS dU} 10} NINODIHLS 0} J8jsuesy yosj ©

‘|[eo ainpadoid-ejowal 1o} yoddns epy Joiadns sepinoid ©

*SJUSLLIUOIIAUD
paseq-ygHOD 01 Buinow ul s}soo 8yl aonpal Apuediiubis |im eousuadxs SIyl —
SJUSWUOIIAUS

paseq jusuodwoo-panguisip ylm aousledxe ulelqo 0] BIpedly Pamo|ly ©
"WOISAS D BIpeIlY BYl .

‘(]ane “eipeoly "6°98) sjuswuoliaus 108[qo-jusuodwo) ©

‘(Jop|Ing uolesIanuo) ‘elpealy ‘piald "B°8) uonesbolul Jueas ulelb-esieo) ©

‘wie)sAs a1y sy} isnl
uey] aiow Aqg paleibajul SJUSWUOIIAUS JO SUOIBIISUOWSP |NJSS82INS

(uo9) SINIWHSITdINODDV




"SOI0USIDI8P [euonoun) gy 01 suonnjos padAlojoid ©

"gourwIoled gyO 01 gHO pue
oouewloped gyo Buunsesw .o} syiewyousq aouewlopad pazipiepuelg ©

'SgdO
yum poddns uoneioge|0o pue sseooid pauiquod jo Aljige|ieAe |elsusk) ©

i PUB € SIBOA
‘3gHO Bunnseaw Joj sysewyouaq Ayfeuonoun) pue souewdoped [epiu] o

_ 'vadO0
ypm uoddns uolneioge||00 pue sse004d SuiquIOD O} Ssjuswledxs [elu] o

‘swsiueyosw
peseq-ygHOD oluo (eipeoly -6-9) sjosloid juswuoliause Jolew Jo 1soy-ay ©

Z PUB | SIBOA o

dVIN-dvOd




Architecture Bibliography
February 1995

References

[1] Software Bus - Rationale. Technical report, ESF-SwB Sub-Project, June 1990.

[2] Application Portability Profile (AIPP). Technical Report NIST Special Publication 500-187,
OSE/1 Version 1.0, April 1991.

[3] RAPIDE 1.0 Executable Language Reference Manual. Technical report, Stanford University,
August 17 1992.

[4] Reference Model for Frameworks of Software Engineering Environments. Technical Report
NIST Special Publication 500-211 and ECMA/TC33 Technical Report TR/55, 3rd Edition,
August 1993.

[5] H. Achkar et al. Software Factory Reference Framework. Technical Report Report of the
Reference Model WG, ESF, October 1990.

[6] R. Adomeit, W. Deiters, et al. K/2R: A Kernel for the ESF Software Factory Support Envi-
ronment. In 2nd International Conference on Systems Integration 92, Morristown, NJ, June
1992.

[7] R. Adomeit and B. Holtkamp. ESF Factory Support Environment: Architectural Refinements
and Alternatives. Technical report, University of Dortmund.

[8] B. Beach. Connecting Software Components with Deaclarative Glue. In ACM 0-89791-504-6,
1992.

[9] 1. Z. Ben-Shaul and G. E. Kaiser. A Paradigm for Decentralized Process Modeling and its
REalization in the Oz Environment. In 16th International Conference on Software Engineering,
pages 179-189. '

[10] T. Bingen, R. Foulkes, and L. Morgan. Data and Control Integration in a Software Factory:
in Software Bus. Technical report, Sema Group - Brussels, Glasgow, Paris.

[11] A. Brown, D. Carney, P. Oberndorf, and M. Zelkowitz editors. Reference Model for Project
Support Environments. Technical Report Technical Report CMU/SEI-93-TR-23, ESC-TR-93-
199, U.S. Navy NGCR Program, also published as NIST Special Publication 500-213, Novem-
ber 1993.

[12] A. Brown and M. H. Penedo. An Annotated Bibliography on Integration in Software Engi-
neering Environments. In ACM Software Engineering Notes, July 1992.




[13] B.W. Boehm and W. L. Scherlis. Megaprogramming. In Proceedings of the DARPA Software
Technology Conference, April 1992.

[14] Purtilo C. Hofmeister, J. Atlee. Writing Distributed Programs in Polylith. University of
Maryland, November 1990.

[15] M. Cagan. An Encapsulator Tutorial. SoftBench Technical Note Series SESD-89-15 Revision
1.1, Hewlett-Packard, Fort Collins, Colorado, 80525, August 1989.

[16] M. Cagan. The McCabe Encapsulation. SoftBench Technical Note Series SESD-89-18 Revision
1.0, Hewlett-Packard, Software Engineering Systems Division, 3404 E. Harmony Road, Fort
Collins, Colorado 80525, August 1989.

[17] M. Cagan. The HP SoftBench Environment: An Architecture for a New Generation of Software
Tools. Hewlett-Packard Journal, June 1990.

[18] C. Chen, E. L. White, and J. M. Purtilo. A Packager for Multicast Software in Distributed
Systems. Technical report, University of Maryland, 1992.

[19] H. Davidson. Encapsulator: The Plug-In Compatibility Tool for SoftBench. SoftBench Tech-
nical Note Series SESD-89-11 Revision 1.1, Hewlett-Packard, Software Engineering Systems
Division, 3404 E. Harmony Road, Fort Collins, Colorado 80525, June 1989.

[20] Christer Fernstrom. Process Weaver: Adding Process Support to UNIX. In Proceedings of the
Second International Conference on the Software Process, Berlin, Germany, February 1993.

[21] R. Foulkes. The ESF Software Bus. Technical report, Yard Ltd., UK - Glasgow, 1990.

[22] R. Foulkes, O. Nanlot, T. Bingen, and C. Ginn. The Software Bus - An Overview. Technical
report, Sema Group Belgium, September 5, 1991 1991.

[23] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting Style in Architecture Design Environments.
In 2nd ACM SIGSOFT Symposium on Foundations of Software Engineering, New Orleans,
Louisiana, December 1994.

[24] D. Garlan and E. Tlias. .Low-cost, Adaptable Tool Integration Policies, for Integrated Environ-

ments. In 4th ACM SIGSOFT Symposium on Software Development Environments, Irvine,
CA, December 1990.

[25] D. Garlan and M. Shaw. An Introduction to Software Architecture. Technical Report
CMU/SEI-93-TR-33, Carnegie Mellon University, 1993. also in Ambriola, V; and Tortora,

G, Advances in Software Engineering and Knowledge Engineering, Vol. 1, Singapore, World
Scientific Publishing.

[26] Michael Gera, Bruno Hirsch, Bernard Holtkamp, Jean-Pierre Moularde, Graham Samuel, and
Herbert Weber. CoRe, A Conceptual Reference Model for Software Factories. Technical report,
Eureka Software Factory, November 25 1992.




[27] M. Gorlick. Cricket: A Domain-Based Message Bus for Tool Integration. Technical report,
The Aerospace Corporation.

[28] M. Gorlick and R. Razouk. Using Weaves for Software Construction and Analysis. In 13th
International Conference on Software Engineering, Austin, Texas, May 1991.

[29] D. Heimbigner. The Process Wall: A Process State Server Approach to Process Programming.
In Proceedings of the 5th ACM SIGSOFT Symposium on Software Developement Environemnts
- ACM Software Engineering Notes, December 1992.

[30] D. H. Heimbigner. ARPC: An Augmented Remote Procedure Call System. Technical Report
CU-Arcadia-100-92, Department of Computer Science, University of Colorado, October 19
1992.

[31] B. Holtkamp. Service Component Reference Model. Technical Report ESF Internal paper,
University of Dortmund, march 1991.

[32] B. Holtkamp. MUSE - A Framework for Decentralized Software Development Environments.
Technical report, University of Dortmund, 1992.

[33] B. Holtkamp. MUSE Interoperation Support. Technical report, Fraunhofer Institue for Soft-
ware and Systems Technology, 1992.

[34] B. Holtkamp and F. Schuelke. The Software Bus - Communication Aspects. Technical report,
University of Dortmund, March 18 1991.

[35] B. T. Jenings, Jr. The HP SoftBench Message Model: Concepts and conventions used by
the Hp SoftBench Tools. SoftBench Technical Note Series SESD-89-21 Revision 1.2, Hewlett-
Packard, Fort Collins, Colorado 80525, September 1989.

[36] R. Kadia. Issues Encountered in Building a Flexible Software Development Environment -
Lessons from the Arcadia Project. In Proceedings of the 5th ACM SIGSOFT Symposium
on Software Development Environments - ACM Software Engineering Notes, Virginia, USA,
December 1992.

[37] A. Karrer, M. H. Penedo, and C. Shu. A Survey of Software Engineering Environment Ar-
chitecture Approaches. Technical Report Arcadia-TRW-93-007, TRW, Redondo Beach, CA,
1990, November 1993.

[38] S. A. Kramer. SoftBench DM Message Integration Requirements. SoftBench Tecnhical Note
Series SESD-89-20 Revision 1.2, Hewlett-Packard, Fort Collins, Colorado, August 1989.

[39] B. Liskov. Distributed Programming in Argus. Communications of ACM, pages 300-312,
March 1988.

[40] J. Magee, J. Kramer, and M. Sloman. Constructing Distributed Systems in Conic. IEEE
Transactions on Software Engineering, June 1989.




[41] M. Maybee, D. Heimbigner, D. Levine, and L. Osterweil. Q: A Multi-lingual Interprocess
Communications System for Software Environment Implementation. Technical Report CU-
CS-92, Department of Computer Science, University of Colorado, 1992.

[42] L. Morgan. The Software Bus - User Requirements. Sema Group Belgium, 4.2 edition, Septem-
ber 1992.

[43] L. Morgan. The Software Bus - Reference Manual. Sema Group Belgium, 4.0 edition, March
1993.

[44] L..Morgan. The Software Bus - User’s Guide. Sema Group Belgium, 4.0 edition, March 1993.

[45] M. Moriconi and X. Qian. Correctness and Composition of Software Architectures. In 2nd
ACM SIGSOFT Symposium on Foundations of Software Engineering, New Orleans, Louisiana,
December 1994.

[46] B. A. Nejmeh. Characteristics of Integrable Software Tools. Technical Report Integ S/W
Tools-89036-N, Software Productivity Consortium, May 1989. Version 1.0.

[47] OMG. Object Services Architecture. Technical Report OMG Document Number 92.8.4, Object
Management Group, Object Management Group, Inc., Headquarters, 492 Old Connecticut
Path, Framingham, Ma. 01701, August 1992.

[48] OMG. The Common Object Request Broker: Architecture and Specification. Technical Report
OMG Document Number 91.12.1 Revision 1.1, Object Management Group, Object Manage-
ment Group, Inc., Headquarters, 492 Old Connecticut Path, Framingham, Ma. 01701, 1992.

[49] OMG. Object Request Broker Architecture. Technical Report OMG TC Document 93.7.2,
Object Management Group, Object Management Group, Inc., Headquarters, 492 Old Con-
necticut Path, Framingham, Ma. 01701, 1993.

[50] M. H. Penedo. Different perspectives on integration. In Proceedings of Process Sensitive SEE
Architecture Workshop, Boulder, CO, September 1992.

[61] M. H. Penedo. Towards understanding Software Engineering Environments. In Proceedings of
TRW Conference on Integrated Computer-Aided Software Engineering, California, November
1993. also in TRW Technical Report IMPSEE-TRW-93-003.

[52] M. H. Penedo and D. Berry. The Use of a Module Interconnection Language in the SARA
System Design Methodology. In Proceedings of the fth International Conference on Software
Engineering, Munich, Germany, September 1979.

. [563] M. H. Penedo and W.E. Riddle. Process-sensitive Software Engineering Environment Archi-

tectures - Summary Report. In ACM Software Engineering Notes, July 1993.

[54] M.H. Penedo, E. Ploedereder, and I. Thomas. Object Management Issues for Software Engi-
neering Environments - Workshop Report. In Proceedings of the 3rd ACM Software Engineering
Symposium on Software Development Environments, Boston, November 1988.~




[55] M.H. Penedo and C. Shu. Acquiring Experiences with the Modeling and Implementation of
the Project Life-cycle Process - the PMDB work: IEE and British Computer Society Software
Engineering Journal, September 1991.

[56] D. E. Perry and G. E. Kaiser. Models of software development environments. In Tenth
International Conference on Software Engineering, pages 60-66, April 1988.

[57] Dewayne E. Perry and Alexander L. Wolf. Software Architecture. Technical report, AT&T
Bell Laboratories, Murray Hill, New Jersey, September 1989. Revised January 1991.

[58] Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of Software Architecture.
ACM SIGSOFT Software Engineering Notes, (17,4):40-52, October 1992.

[59] J. Purtilo. Polylith: An Environment to Support Management of Tool Interfaces. In ACM
SIGPLAN Symposium on Language Issues in Programming Environments, July 1985.

[60] J. Purtilo. The Polylith Software Bus. Technical Report TR-2469, University of Maryland,
April 1991. '

[61] J. M. Purtilo, R. T. Snodgrass, and A. L. Wolf. Software Bus Organization: Reference Model
and Comparison of Two Existing Systems. Technical Report Technical Note No. 8, DARPA
Module Interconnection Formalism Working Group, November 1991.

[62] S.C. Bandinelli and A. Fuggetta and C. Ghezzi. Software process model evolution in the spade
environment.

[63] F. Schuelke. The MUSE System. Technical report, Eureka Software Factory, April 25 1991.

[64] M. Shaw. Larger Scale Systems Require Higher-Level Abstractions. In Proceedings of the Fifth
International Workshop on Software Specification and Design. IEEE Computer Society, 1989.

[65] M. Shaw. Heterogeneous Design Idioms for Software Architecture. In Proceedings of the Sizth
International Workshop on Software Specification and Design, Como, Italy, October 25-26
1991. IEEE Computer Society.

[66] C.Shu and M. H. Penedo. SEE Software Bus Survey. Technical Report IMPSEE-TRW-93-008,
) TRW, Redondo Beach, CA, December 1993.

[67] S. Sutton, Jr. and M. H. Penedo. Process-based SEE Architectures Session Report. In Proc.
of the Tth International Software Process Workshop, California, October 1991.

[68] G. Tatge. HP SoftBench. In FedCASE ’89, 1989.

[69] R.N. Taylor et al. Foundations for the Arcadia Environment Architecture. In Proceedings
of the 3rd ACM Software Engineering Symposium on Software Development Environments,
Boston, November 1988.

[70] UniDo. Kernel/2 Definition. Technical Report ESF, University of Dortmund, September 1991.




[71] J. Veijalainen, F. Eliassen, and B. Holtkamp. The S-transaction Model. Morgan Kaufmann,
July 12 1991.

[72] K. Wallnau and P. Feiler. Tool Integration and Environment Architectures. Technical Report
CMU/SEI-91-TR-11, Carnegie Mellon University, May 1991.

[73] J. C. Wileden, A. L. Wolf, W. R. Rosenblatt, and P. L. Tarr. Specification Level Interoper-
ability. In Proceedings of the 12th International Conference on Software Engineering, Nice,
France, March 1990.




11. PSEE Tutorial: Trends in the Construction of Next Generation Software
Engineering Environments, by M. Penedo.

[Included as an attachment]




